TECHNICAL NOTE

gLyJLd_tILlMW MS2781A Signal Analyzer

Introduction

Signature is a combined high performance Spectrum Analyzer for characterizing RF signals and a high performance
Vector Signal Analyzer for characterizing digitally modulated signals. Signature expands the ability to analyze RF signals by
offering seamless connectivity with MATLAB® and Simulink® from The MathWorks. Engineers can view measurement
results through custom MATLAB and Simulink analysis giving exceptional insight into the performance of new designs.

This technical note describes how to make this connection, and uses a number of examples to illustrate the power of this
combination. Simulink and MATLAB options, such as the Signal Processing Toolbox, are also illustrated. If you are not
already using MATLAB, you can find out more information from the MathWorks web site, at: www.mathworks.com.

A limited-time trial version of MATLAB and other MathWorks products is also available to Signature users. Go to the
following web address to find details about this trial offer: www.mathworks.com/anritsu.
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MATLAB Analysis Examples

These examples illustrate what is possible using Signature
with MATLAB. The examples include making
measurements of harmonics, channel power, adjacent-
channel power ratio (ACPR), spectrograms, and custom
demodulation. Results of these measurements are shown
on this and the following page.

These displays are created using the MATLAB graphical-
user-interface creation software, called GUIDE. This user
interface is then combined with the measurement
algorithms shown later in this application note. You can see
all of these displays and more on Signature by using the
demonstration code that comes with the “Connectivity to
MATLAB” option (Option 40). For more details on this,
refer to the section “MATLAB Demonstration.”
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Note that all of the example MATLAB code in this
application note is available as part of the Signature
“Connectivity to MATLAB” option, usually in the form of
functions. You can tell the name of the function or script
by referring to the 1% line of the example code.

All of this code can be found on Signature, in the directory:
CaSignature\MathworksConnectivity
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Installing MATLAB on Signature

Install MATLAB with any options, using any MATLAB licensing option, onto the C: drive in Signature. It is best to install

MATLAB into the default directory.

Note that for the seamless connectivity between Signature and MATLAB shown in this note, your Signature needs

option 40—Connectivity to MATLAB.

Configuring Signature to use MATLAB

Once you have MATLAB installed, start it from within Signature by clicking on
the Signature Tools/MATLAB pulldown menu.

You will get all of the displayed Signature traces ported into MATLAB, for
example as Signature_Tracel or Signature_Trace2. You can also get IQ
vectors by using the Advanced tab in the dialog. See the ‘IQ Vectors’ section for
more details on how to get IQ vectors.

You can then set up the instrument in the normal way. When sending traces to
MATLAB, all active instrument traces and instrument setup data will all
automatically appear in the MATLAB environment. This makes it much easier
to get data out of the instrument into this industry-leading analysis tool.

You can also enable handshaking between Signature and MATLAB. Refer to
page 10 for more details about this.

The MATLAB Desktop Window

MATLAE Setup 3]

Basic ‘ Advanced ‘

v

Connect To MATLAB: Off on

MATLAB v
HandShake: Off On

Signature_Control"StartSweep'); Starts Sweep from MATLAE

Close

Signature Configuration dialog for connecting to MATLAB.

When you start MATLAB from Signature, you get the

normal MATLAB desktop. The Signature information is L’E %; %,E }3@, w@w PP E. ..,L:?ag,. - ;@, W t ryé

automatically available in the MATLAB Workspace, as you
can see in the figure.

You can easily see the variables being used, type in
commands, and see the history of commands you’ve used
from this window.
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Getting Setup Information from Signature into MATLAB

When you start MATLAB from Signature, the instrument
setup information is automatically created in a MATLAB
structure called Signature_Setup_Data.

For example, if you need to know the center frequency
that the instrument is tuned to, you can refer to this
variable:

Signature_Setup_Data.CenterFrequency

This variable has the value (in Hz) of the current center
frequency.

If you double click on a variable name in the Workspace
pane on the MATLAB desktop, or type the variable name
on a MATLAB command line, you can see the details of
the structure and the current values.

Having the setup information automatically available in
MATLAB means that you can set up the instrument to
make measurements the normal way, and all of the setup
information is conveniently available in MATLAB. This is
much simpler than having to query the individual setup
items, as you had to in the past.

»> 8ignature Setup Data
Signature Setup Data =

Centerfrequency: 4.0000e+005
Span: 9.0000e+00%
SweepTime: 16
RBW: 3000000
WBW: 10000000
Reference Level: 0
Attenuation: 10
Frequency Offset: 0
Reference Level Offset: 0
ScaleTypelinear: 0
SweepType: 'Normal'
dB per Div: 10
Display points: 501
Nbw to rbw: 1
SymbolRate: 3.8400
SymbolRateUnits: 'MHz'
InputSignal: 4
ModulationType: TQPSK'
Sampling period: 3.3000s-006
DataReady: 1
Handshake: 'Off'

Example Signature setup information in MATLAB.

Getting Data from Signature into MATLAB

When you start MATLAB from Signature, you can make the active traces or IQ vectors automatically available in the
MATLAB workspace. Then all you have to do is use them. In the next few pages there are a number of examples of how

you might use the Signature data in MATLAB.

Viewing the trace values

If you double-click on a trace name (e.g. Signature_Tracel)
in the MATLAB Workspace pane, you will see the values of
the variable in the Array Editor pane.

These values are in the current measurement units, which
you can check in the Signature_Setup_Data structure.

Note that the values in the Array Editor pane are only
updated when you press Enter in the MATLAB Command
Window, so instrument changes may not be immediately
reflected there.
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Drawing a Signature trace in MATLAB

There are several ways to draw a Signature spectrum trace
in the MATLAB environment, including using plot, using a
loop, or using timers.

Plot
The simplest is to use the MATLAB plot function:

plot (Signature_Tracel)

This is simple and effective, but doesn’t scale the x-axis
correctly, nor update the plot when new data is available.

Note that all active Signature traces are available, up to
Trace5. Note that blank traces are not cleared from the
Workspace.

To properly scale the frequency axis, you need to create a
vector that defines the frequency of each trace point. By
using the information in the Signature_Setup Data
structure, this is simple—you just create a vector using the
start and stop frequencies, and a step size based on the
number of display points and the span . For example, the
7 lines of MATLAB code shown on the right create a
function to do a scaled plot. The resulting plot is shown as
well.
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function PlotTrace with scaling(trace, setup)
FPlotTrace with 3:‘;;111[7_':1_'&[“&,SE':'.IDI

3Plot a Sighature trace including ®x— £ v-axis scaling
strace i3 the Jignature trace

tZetup is the Signature setup SCLIUCCuUre

: Copyright Z004 Anricsu Company

% Rewvis=ion 1.2 3 September 2004
start=getup,CenterFrequency - setup.2pan/2;
stop=start + setup.Span;

display intervals=setup.lisplay_points - 1;
freq step=setup.dpan / display intervals;
freg=start :@: fregq_ step : stop:

plot (freq, trace):

A few lines of MATLAB code add a scaled x-axis.




Loops

By using a loop, you can automatically update the plot when
the instrument updates the trace data. The figure at the
right shows this. This code has two interesting aspects. The
first is the loop statement, which is while (ishandle (h) ).
This loop repeats until the drawing window is closed, which
is very natural for the user. The pause (0.1) statement
allows MATLAB to actually draw the figure. MATLAB only
updates graphics when computation isn’t being done, so
without the pause, the graph would never be updated.
MATLAB would also consume all available CPU resources,
slowing the instrument display.

A slightly improved version of the above (shown at the
right) doesn’t re-draw the entire plot, but merely updates
the trace data. This reduces the plotting overhead by
about 50%.

By using the code h=plot (Signature_Tracel), the
variable h becomes a graphics handle that references the plot.
The later code set (h, 'YData', Signature_Tracel)
updates the trace data, and the pause (0.1) makes
MATLAB redraw the plot.

% FlotTracel
14 Anritsu Cowpany

g Octoker 2004

plot (Signature_Tracel):
h=gca;
while (ishandle(h))
PlotTrace with scaling to_axis...
th, Slgnature_Tracel, Signature_SEtup_Data]
pause (0,1) ;
end

function PlotTrace with scaling to_awxis(h, trace, setup)
$PlotTrace_with scaling(h, trace, setup)

%Plot a Signature trace including ®- & v-axis scaling
%h 13 a handle to a

pre-existing graphics
%trace is the Signature trace

%setup i3 the Signature setup structure

% Ccopyright 2004 Anritsu Company
% Fevizion 1.1 28 July 2004
start=gzetup.Centerfrequency - setup.3pan/Z:
stop=start + setup.Span;

display intervals=getup.Display points - 17
freq step=setup.span / display intervals:
freg=start : stops
plotith, freq, trace):

freq step :

A loop updates the graph automatically.

5P lotTracela

“opyright 2004

1 Company

20049

¢ Revizion 1.3 28

start = Signature_Setup_Date.CenterFrequency - Signature_Setup_Data.Span/z:
stop = start + Sigoature Secup Dace.Span:

display intervals = Jignature Jetup Data.Display points - 1:

freq _step = Signature_Setup_Data.Span / display_intervals:

freq = start : freg_step : stop:

plot [freg, Signacure Tracel):

h=get (ges, ' Children' )z

while (1shandle (b))
ser (b, ' Thoca' ,Signature Tracel]
pause [0.1] ;

end

Using set reduces plotting overhead by about 50%.




Timers

Loops let you have a live display, but only have one at a time and the MATLAB command line is blocked while this code is
running. You can stop the code by hitting “Ctrl-C”, but there is a more user-friendly way—by using a MATLAB timer. The
MATLAB code below shows how to use a timer to re-plot the trace every 100 ms. With this code, if you close the figure
window the timer will stop automatically.

To call this function, you must use the name of the variable, using either of the following two ways:

timerplot (‘Signature_Tracel’)
timerplot Signature_Tracel

This is because MATLAB passes parameters to function by value. This means that once the function is called, you can’t
change the value of the parameter because the function has a copy of the data. To get around this, the timer code uses a
MATLAB function called evalin. This function evaluates a MATLAB command and returns the current value. The timer
code makes use of this by evaluating the current value of Signature_Tracel. An alternative to this would be to use a Global
variable, but this is generally not good programming technique.

function timerplot (Tracelsmme)
% function tiwmerplot (TracelMame)

% plots the dats in the wvariabhle TraceMNaswe every 100 ms
Copyright 2005 Anritsu Company

Fevision 1.2 Z7 April 2005

P

hFig = figure('MName',wfilename, 'CloseRequestFon' fclosefiyg, 'DoubleBuffer' , 'on');:
trace=evalin('base', Tracelame) ;

hPlot = plot(trace); % Initial plot
title('timerplot'): xlabel (' Frequency'): Tlabel (' Lmplituds'):

hTime = timer ('Name', [wfilename, ' Timer'], ... Give it a name that coresponds to the file name
'ExecutionlMode’ ,'fixedSpacing', ...
'Pericd' ,0.1,...

'FtopFon'  @stoptimer, ...

Make the plot update on a fixed Rate
Update the plot 10 times & second

On Stop closes the figure and clear timer
'TimerFen',{@plocfunction, Tracelame}, ... The real work of the plot
Error handling

Eeep & handle to the plot to be updated.

'ErrorFen' ,Aploterror, ...
'Tzerbata' , [WFig, hPlot] )

A AT A A e

builtin('=set' hFig, 'Userlata’,hTime) ; % Keep a handle to the timer
set (hFig, 'HandleVisibility', 'callback');
start (hTime) ;

Hide the figure handle--other plots won't overwrite it
Start the timer

P

BHEELEELEERELEELLS

5 5
function stoptimer (hTime,varargin)
udata = get (hTime, ' Userlbata'):
hFig=udatail]:
delete (hFig)

delete (hTime) 2

R e e LI LI LI

5 EREERELEERTEEY

function plotfunction(hTime,varargin)

udata = get (hTimwe, 'UserData'); % Betriewe handles to the figure £ plot

hPlot = udata(Z)]:

trace = evalin('base’',varargin{i}): 3

set (hPlot, 'fhata' ,trace) ; % Update the trace data (the y-axis)
%

Force MATLAE to draw the plot

Get the latest trace data

drawnow;

5 5%
function ploterror (varargin) Get & handle to the figure and close it.
hFig = findokj ('Mame',wmfilename)
if ~izewpty(hFig)

close (hFig):
end

disp(['error', wvarargin{:}]1):

55%% %
function closefig(hFig,varargin) Get @ handle to the timer, stop & delete it, then close the figure
hTimer=get (hFig, ' UserData'):
try

atop (hTimer) :
catch

closereq

end

A MATLAB timer lets you automatically update multiple plots as well as retain use of the MATLAB command line.
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Synchronization

Another improvement of the above is to use the “Handshake” function in the Signature interface to MATLAB. This
handshaking allows you to know when Signature is finished making a measurement. Handshaking can be useful for such
things as storing or averaging multiple traces, where you need to know when the trace data is new. You can turn
Handshake on or off from the checkbox on the bottom of the MATLAB setup dialog.

This figure shows how to plot traces with handshaking. The concept is simple—just wait for
Signature_Setup_Data.DataReady to be set to 1. When you have copied or used the data from Signature, use the
line Signature_Control ('StartSweep'). This line of code calls a MATLAB function that has been added as part of
the Signature Connectivity to MATLAB option, and it just tells Signature to start a new measurement. Some simple
MATLAB code to use this functionality is:

while (Signature_ Setup_Data.DataReady~=1 %New data ready?
pause (0.01); %Give up CPU

end

%Code to use Trace or IQ Vectors

Signature_ Control (‘StartSweep’) ; %Start a new sweep

In many of the examples, this is reordered somewhat for code simplicity, but this is the basic concept.

¥ PlotTracel svnc

¢ Plots traces, syncronized with Signature handshaking
¥ Copyright 2005 Anritsu Company

2 Reviszion 1.5 23 May 2005

ploti{signature Tracel};

h=gcar 23et a2 handle to the fiqure, so we know wher C's closed
Signature Control({'startSweep'); 2Tell Signature to tazke z new measuremst
while (ishandle(h)) 2Continue until figure closed

PlotTrace with scaling to axis...
(h, Signature Tracel, Signature Setup Data)

1f strcmpi{signature Setup Data.Handshake, 'On') look for D dy if Handshake on
while Signature Setup Data.DataReady~=1 fwWait for Data Reads 1 Signature
pause(0.01); 821low Signature to use CPU
end
Siqnature_[‘,ontrol ("Startsweep'); 23tart a new measuraement
and
pause (0.1} ; 221low time for drawing

and

Plotting can also be synchronized with Signature sweeps.
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Trace Averaging with Handshaking

We can then take the additions for synchronization and add an averaging function, seen in this figure. Note that due to
the autoscaling in MATLAB, it may appear that averaging is not happening; check the y-axis scale to see that it reduces as
the averaging progresses.

i PlotTracel avg

% Plots exponentially averagsd traces
¥ Copvright 2005 Anritsu Company
% Revision 1.2 23 May 2005

Number of averages=10;
avg factor=1/Number of averages;

plotted trace=signature Tracel;

plot{plotted trace);
h=gcar 2Get a handle to the figure, so we know when it's closed

while (ishandle(h)}
PlotTrace with scaling to axis(h, plotted trace, Signature Setup Data)

plotted trace=(l-avg factor)*plotted trace + ...

avg factor * Signature Tracel; SPerform exponential averaging
Signature Control ('StartSweep'); FTake a new measurement
if stromp{Signature Setup Data.Handshake, "On') %Check that handshaking is turned con
while Signature Setup Data.DataReady~=1 $Walt for Data Ready from Signature
pause(0.01} ;
end
else

disp ('Please turn Handshaking On in Signature for proper averaging') s
return
and
pause(0.1);
end

Synchronization between Signature & MATLAB allows trace averaging.
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Storing Multiple Traces with Handshaking

Or we can use the synchronization to store multiple acquired traces, as shown in this figure. This lets you gather data
quickly, then analyze later when you have more time. You could also store sets of captured IQ) vectors in a similar fashion.

StoreTraces

5

=R

Stores multiple traces to c:\Signature Traces.mat

Works best with Signature hancdshaking turned On

= 2]

Copyright 200% Anritsu Company

==

Fevision l.Z 23 May 2005

Mumber of traces=10;
Trace storage=zeros (Number of traces,length{Signature Tracel)); %Pre-allocate storage array

for index=1:Number of traces
1f strcmp(Signature Setup Data.Handshake, 'On') %Check that handshaking is turned on
while Signature Setup Data.DataReady~=1
pause(0.01);
end
Trace storage(index, :)=8ignature Tracel; 2hdd current trace to storage array

hs

Signature Control('StartSweer
else
disp('Please turn on Handshaking to ensure stored traces are different’)r

end

end

save('c:\Signature Traces', 'Trace storage', 'Signature Setup Data'};
%Store the captured traces & setup information to disk

Store multiple traces from MATLAB by using Synchronization.

Manual Sweep with Handshaking

When you are synchronizing a MATLAB script to Signature, you may want to wait until the user pushes the Sweep key to
do something new. For example, you may want to store traces from multiple experiments, where the user needs to change
the device being tested.

In this case, you can replace the line that says

Signature_Control (‘StartSweep’) ; with
Signature_Setup_Data.DataReady=0;

This keeps the code waiting until a new measurement is finished, which won’t happen until after the user presses the
Sweep key on Signature.
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Timers with Handshaking

If we want to use both a timer and the Signature handshaking function, we need to modify the timer code a bit. The
changes are very simple, so we haven’t reproduced the entire code here. Only the ‘plotfunction’ is modified by adding the
code to check if the Handshake is on, wait for DataReady, and start a new sweep. The function is also called with both the
trace name and setup name, such as:

timerplot_sync (‘Signature_Tracel’, ‘Signature_Setup_Data’)

If you wish, you can look at the complete code on a Signature with option 40.

function plotfunction(hTime,varargin)
udata = get{hTime, 'UserData’;); % Retriewve handles to the figure & plot
hplot udata(2):

setup structure = evalin('hase',varargin{3}}:
if stromp(setup structure.Handshake,'in') && setup structure.DataReady~=1

return % If Handshake iz on and data isn't ready, don't plot

end

trace = evalin('bagse',varargin{Z};: % Get the latest trace data

set (hPlot, "TData’,trace); % Update the trace data (the y-axis)

drawnow; % Force MATLAB to draw the plot

if stromp{setup structure.Handshake,'on') $0nly start a new sweep 1f there is handshaking
Signature_Control('StartSweep');

end

By changing the plotfunction in timerplot .m, timer-based plots can work with synchronization.
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Zero-span traces

For a zero-span trace, the Y-axis is identical to a spectrum trace, but the span is zero, and the X-axis is now in time.
You can again use the Signature_Setup_Data structure to check the span, and then find the trigger delay and
time-per-division values.

The code below shows an expanded version of the previous PlotTrace code that also plots scaled zero-span traces.

function PlotTrace with scaling and zero spanitrace, setup)
$Plot a Signature trace including =- & y-axis scaling
$for both gpectrum & zZero-gpan traces

$ Copyright 2004 Anritszu Company
% Revision 1.2 25 August 2005

if setup.Span == 0 % zZero span, =0 =Z-axis 1s time
start time = 0;
gstop time = start time + setup. SweepTime;

display intervals = setup.Display points - 1:
time step = setup. SweepTime / display intervals;
time = start time : time step : stop time:

plot {time, trace);

elze
start=setup.CenterFrequency - setup. Span/z;
stop=start + =etup.Span;
dizplay intervals=setup.Display points - 1;
freq step=setup.8pan / display intervals:
freg=start : freq step : =stop:
plot (freqg, trace):

end

Example MATLAB code to plot either spectrum or zero-span traces.
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Modulation Measurements

Traces from the modulation measurements option (option
38) are created as separate variable names.

These are:

Signature_VsaTimeDomain_Data
Signature_VsaVector_Data

The Signature_VsaTimeDomain_Data is the power
versus time waveform. This is normalized so that the peak
value is 0 dB. You can see a plot of this in the figure to the
right. This graph was created by using

plot (Signature_VsaTimeDomain_ Data)

The Signature_VsaVector_Data is the vector diagram
waveform. You can plot a constellation by selecting the
symbol points and plotting just ‘markers’ in MATLAB, as
shown in the code below.

* Figure 1 ]
File Edi View Insert Took Deskbop Window Help
DFE& & A4ans ¢ 0E =0

Aplot of Signature VsaTimeDomain_Data shows the equivalent of a zero-
span waveform.
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MATLAB Constellation plot.

FConstellation plot
% Copyright Z004 Anritsu Company

% Revizion 1.0 28 July 2004

roints per synbol=35;

constellation points = reshape (Signature VsaVector Data,points per sywbol, [])¢
constellation points = constellation pointa(l, :):
plot (constellation points, 'Lineftyle','none', 'Marker', '.')

Plot a constellation in MATLAB with this code.
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|Q Vectors

The IQ vectors from Signature give you the most freedom to make complex measurements, such as FFTs or demodulation.
The IQ vectors also allow larger data sets, such as for making CCDF measurements (refer to the CCDF section for more
details on this measurement). You can get up to 10 million IQ vectors in a few seconds, as well as 30 MHz capture
bandwidth if the Signature has Option 22. If you enable IQ vector output, you will get a MATLAB variable called

Signature_IQ Data, as well as the setup structure Signature_ Setup_Data.

Having easy access to 1Q) vectors provides the ultimate capability in creating custom measurements. Since the IQ vectors
describe the I and Q state (or equivalently the amplitude and phase), you can extract any information about the signal that
you want. You can determine the frequency variation versus time, create spectrograms, look at amplitude statistics, or even

demodulate the signal. Measurements that describe how to do this are shown later in this note.

To send IQ vectors to MATLAB, select the ‘Advanced’ tab on the MATLAB setup
dialog in Signature. Then turn on Send to MATLAB IQ Data. You can now
select the sample rate, capture length, choose single or continuous sweep, and
pick the input source (RF or rear-panel IQ)). Handshaking is still available in
the IQ vector output mode.

You may want to note several things about the IQ vector output to MATLAB mode:

® The sample rate that you choose is the sample rate of the IQ) vectors output to
MATLAB. Note that this is 1/2 of the sample rate of the IF signal inside
Signature, before the signal is converted to 1Q vectors.

® No traces are displayed; the instrument is now dedicated to output IQ vectors
to MATLAB.

e If you close the Signature MATLAB dialog, the instrument automatically exits
1Q vector output mode; this ensures you don’t get a blank display.

® There are no calibrations applied to the IQ vectors. This means that the
absolute amplitude may be off by several dB, and that the frequency response
(especially near band edges) may vary in both amplitude and phase. The
frequency response over the center 10% of each band is very flat, however.

¢ For the fastest sample rates there may be transients at the beginning and end
of the data. For the 12.5 and 25 MS/s sample rates, there is a transient at
both the beginning and end that is about 20 samples long. For the 50 MS/s
rate, the beginning transient is very small, and is only about 5 samples long; at
the end of the data the transient is about 10 samples long. If you are using
these sample rates, you may want to eliminate these points from you
measurements. The use of negative trigger delay (pre-trigger) and extending
the capture time can help with this.

There are no visible transients for lower sample rates.

MATLAB Setup

Basic Advanced ‘

Send To MATLAB

v
IQ Data Off -
Sample Rate(S/s)
Band Width (Hz) S0M /25 M
Capture Time ’W

Sweep Mode: v
Continous  Single

Input RF Input
Impedance v

MATLAB v

HandShake: Off on

Signature_Control['StartSweep’); Starts Sweep from MATLAR

Close

Signature MATLAB Setup dialog for 1Q vector output.
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Plotting 1Q Vectors

Some simple examples of using IQ vectors are plotting the amplitude of the signal versus time, the spectrum of the signal
(by using an FFT), and the amplitude of the individual I and Q waveforms.

Plotting the Magnitude of 1Q vectors

The figure below shows how to plot the amplitude of the IQ) signal; this is the same as the envelope of the signal into
Signature. This allows handshaking, but instead of plotting the traces, it plots 10*10g10 (abs (Signature_IQ Data))

B Plot IO
% Copvright 20095 Anritsu Company

g Revision l.2 23 May 2005

plot{abs{Signature I0 Data));
h=gqca;
Signature Control('Startsweep'); 3Tell Signature To take a new measurement

it

while {(ishandle(h)}
plot(10*1loglbiabs (Signature_IQ_Data) 1
if strcmp{Signature Setup Data.Handshake, 'On') 80nly start a new sweep 1f there is handshaking
while Signature Setup Data.DataReady~=1
pause(0.01) 7
and
Signature Control ['StartSweep');
end
pause (0.1) 7
end

Plot the magnitude of 1Q vectors.

FFT of 1Q vectors
You can also plot the spectrum of the IQ) vectors by changing the plot command to:
plot (10*1ogl0 (abs (fftshift (fft (Signature_IQ Data)))));.

An example of the results is shown in the figure to the right. Fiaure 1 CEX
Fle EdRt View Insert Teok Deskiop Windew Help uf
DE@&E &k &a2n® & 0B =0

ﬂ/w*"/ \M ﬁ

FFT of 1Q vectors, without windowing.
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FFT with Windowing

An enhancement to this is to use an FFT window, such as
the well-known ‘Hann’ window. Many windows are
available in the MATLAB Signal Processing Toolbox.

These windows reduce the “leakage” or the sidebands on
the signal above. Different windows have different effects
on the spectrum. A complete discussion of window choices
is beyond the scope of this technical note. An example of
a windowed FFT is shown in the figure at the right. Note
that the sidelobes are about 20 dB lower than in the
previous FFT plot.

Figura 1
Fle EdR View Insart Teok Deskiop Windew Help
DE@&E &k &a2n® & 0B =0

B

B

™™

o Ei] E:l (o] TR0 fFi]

FFT of 1Q vectors, using a Hann window.

To use a window, replace the FFT “plot..” line on the previous page with the following 5 lines. An automatic FFT plot of
the windowed IQ vectors is available by calling the script plot_TIQ fft.

plot_IQ fft.WindowLength=length(Signature_IQ Data) ;
WindowArray=window (@hann, length (Signature IQ Data))';
WindowAmplitudeCorrection=WindowLength/sum (WindowArray) ;
Trace=10*1ogl0 (abs (fftshift (fft (Signature_IQ Data. *..
WindowArray*WindowAmplitudeCorrection)))) ;

plot (Trace) ;

| and Q magnitudes

Sometimes you want to see the I and QQ waveforms directly.
You can do this by replacing the plotting lines with:

plot (real (Signature_IQ Data)) ;

hold on;

plot (imag (Signature_IQ Data),'-r');
hold off;

This is available by calling the script Plot_I_ and_Q.

Figura 1
Fle Edit View Insart Took Deskiop Window Help
DEES k Rah® & 08 =0

aab

a4

A6

Overlaid plots of the | & Q waveforms.
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I and Q Polar plot Lﬁfﬁmm‘*—?

You may also want a polar plot of the IQ vectors. Since
MATLAB automatically makes polar plots of complex
variables, you can do this by replacing the plot lines with

plot (Signature_IQ Data) ;
set (h, 'DataAspectRatio’, [1 1 1]);

The second line is necessary to make the I and Q axes
equal.

This is available by calling the script P1lot_IQ polar.

Polar plot of 1Q vectors.

Saving captured 1Q vectors to the Anritsu MG3700A Vector Signal Generator

A powerful use of captured IQ vectors is to replay them.
You can do this with an arbitrary-waveform based Vector
Signal Generator, such as the Anritsu MG3700A. The code
to the right, csvout, saves the Signature 1Q) vectors in an
ASCII file. This file is suitable for loading into the
MG3700A by using the ‘Convert’ function in the
IQProducer software that comes with the MG3700A.

Since the captured signal is probably not periodic, there will csvwrite (! L
be a “glitch” at the end of the waveform as it wraps around [real(Signature Ig Data)’, ...

. . . . i Signature IQ Data)'’,...
to the beginning. There are several ways to deal with this: imag(Signature_IQ Datal ', o
[ones(1l,ceil{length(Signature IQ Data)/Z}),...

¢ Capture as long a waveform as possible. With Signature, zerosil, floorilength{Signature IQ Data}/2})]"
you can capture up to 10 million IQ vectors, and the D

MG37QOA has an even longer mem(-)ry avallabl,e' By Write a CSV file to prepare captured IQ vectors & triggering for the MG3700A Vector
capturing a longer waveform, the glitch doesn’t happen Signal Generator.

as often, and therefore has lower power.

e Use a trigger signal for measurements. The MATLAB code shown here creates a signal out of the rear panel of the MG3700A
connector labeled “Connector 1”. This signal goes high at the beginning of the waveform and has about 50% duty cycle.
You can use this signal to trigger Signature or other measurement equipment, so that you can avoid the wrap-around glitch.

e Capture a bursted signal with triggering. If the signal is bursted, you can make the beginning and end of the waveform
almost identical by ensuring the waveform is off at these points—leaving only noise. This makes the wraparound glitch
energy very small. You can use the triggering functions on Signature, including pre-trigger (negative trigger delay), to
capture just the bursted part of the signal.

e Capture a periodic signal. If you can capture exactly N periods of the signal, there won’t be a wraparound glitch. There
are 2 ways to do this:

— If you can phase lock Signature and the source to the same reference frequency, and if there is an integer relationship
between a Signature sample rate and the Device Under Test symbol rate, you can acquire a set of samples that describe
exactly “N” periods of the signal. For example, if the DUT symbol rate is 101 kHz, and you pick the 1 MHz sample
rate in Signature, every 1000 samples in Signature will be exactly 101 symbols from the DUT.

— If the DUT has a modulation format that Signature can demodulate (using the Modulation Analysis option, option 38),
then there is no need to phase lock or pick sample rates carefully. Just demodulate the signal and use the
Signature_VsaVector_Data output. To write this file, edit the csvout code to use Signature VsaVector_Data
instead of Signature_IQ Data.

* “Window” the signal. This is similar in concept to the Windowing used for FFTs. By tapering the ends of the waveform to zero,
you can reduce the wraparound glitch energy. This does, however, add low-rate amplitude modulation to the signal, which
may or may not be acceptable for your use. By capturing a longer signal, you can reduce the rate of this amplitude modulation.
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Example Applications

Spectral Measurements

Signature has a number of built-in spectral measurements, such as channel power and adjacent channel power ratio
(ACPR). This section shows you how to do these and more in MATLAB. This gives you the ultimate flexibility in creating
your own custom measurements. For illustration purposes, this section shows measurements of:

¢ Channel power in several ways:
— Without channel filtering
— With channel filtering
— As a script
— As a function

¢ Adjacent channel power

Channel Power

The Channel Power measurement is used for measuring
the power of a digitally modulated signal. It is simply an
integration of the trace across the channel width, plus
corrections for the resolution bandwidth. The instrument
should be set up for RMS detection (via the Trace menu)
to make an accurate measurement.

The MATLAB code below computes:

® Which trace points encompass the channel

e A correction based on the noise bandwidth of the
current RBW filter

e The trace in mW (instead of dBm)
® The uncorrected channel power, in mW
® The corrected channel power, in dBm

The computed channel power in dBm is then displayed.

¢ Improved channel power and adjacent channel power
measurements using a concept called noise compensation.

® Multi-carrier power
® Harmonics
Occupied Bandwidth

® Power Spectral Density

STE AR CIE[X]
File: |
[mpeen s TE S e
- Synihaic Dl
Charnel Power Measrement
5 L U AU VU MU — i
o o ot
3
H
-
g?‘ﬁ 21% 217 2138 213 214 2141 2142 2143 2144 2145

Frequency [GHz]

Channel Power= -2.271 dBm

Channel Power measurement using MATLAB.

#channel power

% Copyright 2005 Anritsu Company
% Revision 1.2 13 M=y 2005
chw=5e6;

trace=3ignature_ Tracel;
span=3ignature Setup Data.Span;
rbw=8ignature_Setup_ Data.REi;

nbw cor=signature Setup Data.Wbw to riw;

channel points
channel center =

length{trace) * cbhw/span;
ceil{length|trace)/2);

channel_stop

power cor = { chw / (rbw/nbw cor)

powsr_trace = 10.4{trace/10});
integ pwr =
power = 10*logl0{ power cor * integ pwr )7

measures power over a defined bandwidth

channel start = channel center - floor{channel points/2):
channel center + floorichannel points/2);

) # (l/channel points);

sum{ power trace(channel start:channel stop) ):

=

Set the channel bandwidth

% Extract Signature dsta for readability

% Find the # of trace points that describe a channel
% Find the trace center point, =251 for 501 points
% Find the channel stsrt point
% Find the channel stop point
% Compute correction factor for nolse-like signals
% Convert trace to mWatts
} % Integrate the power over the channel

Correct powser wvalue for noise-like signals

o0

Channel power is a simple computation in MATLAB.

20



Channel Power with Filtering

Some channel power measurements require using a receiver filter, such as for the UMTS system. If we modify the above
code, we can easily add this filtering function. Once the filter is created (in the frequency domain), you must multiply the
spectrum (in mW) by the filtering function using this line of code:

power_trace = power_trace .* rrc_filter;

An example of creating a rootraised cosine (RRC) filter, such as used in the UMTS system is shown below:

function y = rrc{tot span, sym rate, alpha, display points)

% ¥ = rrci{tot span, sym rate, alpha, display points)

% Calculates and returns the freq response 'y' for a Root Raised Cosine

% filter with parameter alpha. The freq response is evaluated

% over a span that equals tot span and the 2 sided bandwidth for the filter
% 1s sym rate

% The response for an ideal RRC filter is 1 in the passband, 0 in the stop
% band and 0.7071 at frequencies = half the sym rate

Copyright 2004 Anritsu Company

Revision 1.1 27 Rpril 2005

Modified from revision 1.0 so that the RRC function applies to power waveforms,
rather than voltage waveforms.

o o o o

wo = 2*pi*{sym rate/2);
span = tot span/Z;

-
|

= -gpan: (Z*span/ (display points-1}) ispan:
Z*pi*f;

yv=zeros{l,length{w)): tpre-allocate the array for speed
for 1 = 1: length(w)
if (abs{w(i)) < wc*{l-alpha)}

vii) = 1:
elseif {abs{wi(i)) > wc*{1l+alpha})

yii) = 0;
else

vily = { (1/2y + {(1/2)*cos{ pi*{abs(w(i))-wc*(l-alpha)) s (Z*alpha*wc) ) ):
end

end

MATLAB root-raised cosine (RRC) filter creation function (in the frequency domain).
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Channel Power Function with Optional Filtering

If we combine all of the above pieces, add noise bandwidth correction, and then create MATLAB functions for channel
power and the RRC filter we get the following:

function power = cp{chw, rbw, span, trace, nbw _cor, rrc_mode, alpha, sym rate)

% channel powsr compuatation for noise-like signals

% v = cpl(chw, rbw, span, trace, nbw_cor, rrc_mode, slpha, sym_rate)

% Ccalculates the channel power (in dBEm) for the given trace data and chw i(channel bandwidth)
% Crace 1z assumed to be a vector of dBEm wvalues. Span and rbw are the

% assoclated span and rbw for the trace.

% nbw cor 1g the noise bandwidth correction walue, in linear terms

%

% rro_mode can be 'on' or Toff', alpha 13 the roll-off factor for the RRC

% filter and sym rate is the symbol rate that is used in the filter

o

Copyright 2004 Znritsu Company
% Revizion 1.2 11 May 2005

channel points = length{trace; * cbw/span: % Find the # of trace points that describe a channel
channel center = ceil{length(trace)/2); % Find the trace center point, =251 for 501 points
channel start = channel center - floor{channel points/2); % Find the channel start point

channel stop = channel center + floor(channel points/2): % Find the channel stop point

power_cor = ( chw / (rbw/nbw cor) | * (1/channel points); $ compute correction factor for noise-like signals
powar trace = 10.*{trace/10); % Convert trace to mWatts

if (strompi{rrc mode,'on’))

rrc_filter = rrc{span, svm rate, alpha, length{trace))s % Create ROC channel filter

power trace = power trace .* rrc_filter; Epply channel filter (if regquested)
end

o

integ pwr = sum( power trace( channel start : channel stop ) ):%Integrate the power over the channel
power = 10*1ogl0{ power cor * integ pwr ;: % Correct power walue for nolse-like signals

MATLAB channel power function, with optional RRC filtering.

To invoke the channel power function for a UMTS signal with the required RRC filtering and over the defined 5 MHz
channel width, then display the result (in dBm), type the following (all on one line):

cp(5e6, Signature_Setup_Data.RBW, ...
Signature_Setup Data.Span, Signature Tracel, ...
Signature_Setup_Data.NBW_to_rbw, ‘on’, 0.22, 3.84e6)

Then MATLAB will respond with an answer, such as:

ans=
-10.00
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Adjacent Channel Power (ACP)

The concept of channel power is easy to extend to adjacent
channel power. We can extend the above channel power
function by calling it several times—once for the channel
and once for each adjacent channel. The below MATLAB
function does exactly this.

This code simply calls the channel power function (defined
in the Channel Power section above), then takes a portion
of the spectrum trace for computing the power of the
adjacent channels. The result is the power in each
channel. To convert this to the Adjacent Channel Power
Ratio, simply subtract the ACP levels from the channel
power.

Signature’s 27 dBm typical Third-Order Intercept (TOI)
and low noise figure allow accurate ACPR measurements of
high performance devices.

ERREI B ETE]]
Flle |
CEC T — | FELEy [ Gk E i

g Culm. Ajphn | [ Chan Spairg &
T

; #dacort Charrel Pawsr Measurement

0 | |

Ampituds (48}

21| 24

5 214z
Frqueriy [EHz)

Channel Power= -5.70 dBm
Lower Adjacent Channel Power=-63.93 dBm (-58.23 dB)
Upper Adjacent Channel Power= -83.82 dBm (-58.12 ¢B)

MATLAB Adjacent-Channel Power measurement.

function [ech pow, acp 1, acp_r]

freg_per point = span/length(trace):

center = ceil(lengthitrace)/2);

acp (chw, rbhw, span, trace, nbw_cor, rrc_mode, alpha, sym rate, channel spacing)

% acp=adjacent channel power, used for acpr £ aclr

3 [ch_pow scp 1 acp r] = acpichw, rhw, =span, trace, nbw_cor, rrc_mode, alpha, sym rate, channel_ spacing)
3 ch_pow is the channel power [(in dBm) for the given trace data and cbhw (channel bandwidth)
3 acp_l i=s the channel power (in dBEm] for the left adjacent channel

3 acp_r i= the channel power (in dBEm] for the right sdjacent channel

H

3 trace i= assumed to be a 1-D wector of dBEm walues and span, rbw i= the

% associate span and rbv for the trace

3 nbw_cor is the noise bandwidth correction wvalue, in linear terms

3

3 rre_mode can be 'on' or 'off', salpha is the roll-off factor for the RRC

3 filver and sym_rate is the symbol rate that is used in the filter

3 The FRC filter i=s spplied to the primsry chamnnel

3 Copyright 2004 Anritsu Compsny

% Revision 1.0 28 July 2004

¢h pow = cp(chw, rbw, Span, trace, nbw_cor, rrc_mode, alpha, sym_rate]:

1_center = round(center - ([channel spacing/fregq_per point));
r_center = round{center + ([channel spacing/freg per point)):

1_trace trace( {l1_center - floor({cbw/2Z)/freq_per point}) :

{r_center - floor((cbw/2)/freq_per point}) :

r_Lrace Lrace |

SyI_race) ;
sy rate) ;

acp_L cpichw, rbw, chw, 1 trace , nbw_cor, rrc_mode, alpha,

acp r cpichw, rbw, chw, r trace , nbw cor, rrc mode, alpha,

{1_center + floor|((chw/Z)/freq per_ point}))

[

(r_center + floor|((chw/Z)/freq per_ point)) }:

MATLAB Adjacent Channel Power function.
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Noise Compensation

When measuring ACP, often the instrument noise floor is a limiting factor in making the most accurate measurements.
This limitation can be reduced by using “noise compensation”. This simply measures the instrument noise floor, using
RMS detection and long sweep time to reduce the variance due to noise. The function on the next page modifies the
above ACP measurement by subtracting a reference trace of just the noise from the measured trace including the signal.

gatiire Oen L=
File: |
— 4 — T
m Apha o2 Chan Spacng =z
=P e o v
" o " st N
a |llr \ 30 1
)
o |'I | T | |
. J '| : ! |
3 ] -
3 & 1 | T m | |
|
| ]I £ |r ||
—_— R - -~
Ltk A ey - 5 i T 3 "
‘”-\'“"ﬂ'ﬂl‘" | e IWH‘i"
F3E] 213 21% 213 21 2142 2144 2146 2148 215 am FEET T34 ERE] F3E] Tid 7141 T4 T 146 Ti4E Z16
Frequency [GHz] Fruquancy {3Hs)
Channel Power= -2.33 dBm Channel Power=-2,34 dBm
Lower Adjacent Channel Power= -64.19 dBm (-61.86 dB) Lower Adjacent Channel Power= -66.46 dBm (-64.12 dB)
Upper Adjacent Channel Power= -63.43 dBm (-61.10 dB) Upper Adjacent Channel Power= -65.39 dBm (-62.05 dB)
MATLAB Adjacent Channel Power measurement without noise compensation. MATLAB Adjacent Channel Power measurement with noise compensation.
Notice the lower sideband levels.
tuncticn [ch_pow, acp_l, acp_r, trace] = acpncichw, rbw, spsn, trace, nbw _cor. rrc_mode, alpha, sym_rate, channel spascing, nolse_tracs)
sopnoc=adiacent channel power, uszed for acpr & aclr: nolse compensatlion iz
sdded to be able to messure devices with better =zpecifications
[¢h pow acp 1 acp_r, output_trace] = acpne(cbw, rbw, sSpan, trace, nkbw cor, rro meds, alpha, =vm rate, channel spacing, nelse trace)

ch pow i= the channel pewsr (in dBm) for the given trace data and ckw (channel bandwidth)
acp_ 1l iz the channel powsr (in dBm) for the left adjscent channel

acp_r is the channel power (in dBm) for the right adjacent channel

trace (as an ocutput] i= the result of subtracting the noise trace from the input trace

trace 15 sssumed to be a 1-D vector of dBm valuss and span, rhw 15 the
nkw_cor iz the neisze kendwidth cerrection valus, in linesr terms
rro_moeds can be Ton' or Teoff", alphs iz the rell-off factcr for the RRC
filter and sym_rate iz the symbel rate That iz used in the filter

The RRC filter is applied to the primary channel

Nolse compensation is used te reduce the instrument noisse floor. Measure

%

%

%

%

%

%

%

%

%

% @zzoclate =pan and rhw for the trace
%

%

%

%

%

%

%

% the noise Tloor with the =ignal disconnected, and supply this trace as
%

noise_trace

% Copyright 2004 Anritau Company
% Revizien 1.2 10 August 2005

noise _trace=10."7 (neise trace./10);

trace=10." (trace./10)-noise_traca:

noise trace=0.01.*noise_trace; %create clip limits 20 48 lower tThan tThe nolisse trace
trace=10%1agllimax [Cracs, noisa_trace) 1

ch_pow = cp(chw, rbw, span, trace, nbw cor, rrc_mode, alpha, sym_rate];

freq_per_polint = spanflsngthitrace];

center = ceil (length(trace)/2);

1 _center = reundicenter - (channsl spacing/freg_per_peint)):

r_center = round(center + (channel spacing/freg_per_peint));

1 trace = traca( (1 _center - floar((chw/Z)/freg per_point)) : [l1_center + floor({ickw/2)/freq per point)) J:
r trace = traca( (r_center - floor((chw/Z)/freq psr point)) : [r_center + floor(ickw/2)/freq per point)) ):
acp 1 = cpicbw, rbw, chw, 1 trace , nbw cor, rrc_mode, alpha, sym rate);

acp_r = cplchw, chbw, chw r_trace , nbw corc, rrc_meode, alpha, sym_rate);

MATLAB function for measuring ACP with noise compensation.
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Plotting a Trace and Measuring ACP with Noise Compensation

By combining several of the above concepts, we can get a graph of the instrument trace including labels showing the ACP.
The following code shows:

e Capturing a reference trace

¢ Calling the acpnc function to compute ACP using noise compensation
® Plotting the trace after the noise is removed

¢ Labeling the plot with the channel power ratios

¢ Using the set function to speed the plot updates

2 acpr nc adjscent channel power ratio (sacpr) compuation £ graphing with noise compensation

2 Copyright Z004 Anritsu Company

% Revision 1.1 12 Octoker 2004

chw = 5e6;

rre_modes = 'on';

alpha = 0.22:

Eym_rate = 3.54=6;
channel spacing = Sef;

rbw = Signature_ Setup Data.RBW:

span = Signature_Setup Data.Span;

nbw _cor = Signature_Setup Data.Nbw to_rbw:

start = Signature_ Setup_Data,CenterFrequency - Signature_Setup_Data.Span/2:
stop = s3tart + Signature_Setup_Data.Span:

display intervals = Signature Setup Data.Display points - 1;

freg step = Signature Setup Data.Span / display_intervals;

freg = scart : freg sStep : sStop;

inpuat ('Disconnect input signal, let the sweep finish, then press enter'):;
noise trace=3ignature Tracel;

input ('Feconnect input signal, then press enter');

crace=Jignaturs Tracel;

[ch_pow, acp 1, acp_r, trace] = acpncichw, rhw, span, GCrace, nbw_cor, rro_mwode, alpha,...
sym_rate, channel spacing, noise_trace)
h=plot (freq, trace):

title('Spectrwn Plot with Noilse Compensation').

xlabel ([ 'acp lower:' num2str{acp l-ch pow) dB ..
'channel power: ' num2str (ch pow) A Bm .
'acp higher: ' numZstr (acp r-ch pow) | dE']):

while(ishandle(h))
trace=3Jignature_Tracel;
[ch pow, acp 1, acp r, trace] = acpnc(chw, rbw, span, trace, nbw cor, rre wods, alpha, ...
sym _rate, channel spacing, noise trace);
=et (h, ' Thata', trace)

wlabel ([ 'acp lower:' numZatyr (acp l-ch pow) dB ..
'channel power: ' numéstr (ch_pow) dBm .
'acp higher: ' numZstriacp r-ch powl ' dBE'l):

pause (0.1);
end

Plot a trace & measure ACP with noise compensation with this MATLAB code.

25



Multi-Carrier Power

The ACP function can easily be expanded to show the
power in multiple carriers and offsets. The below code
does this by calling the cp function multiple times, once
for each channel, and then reporting all of the power
levels as a vector.

The second set of code below adds the noise compensation
function, just like for ACP.

Again, Signature’s exceptional TOI performance and low
noise floor enable accurate, fast multi-carrier power
measurements.

Frequency [GHz]

Channel # 1= -£1.26 dBm
Chennel # 1= 5272 dEm
Charngl # 3= .4 54 dBm
Charngl #4=.4.52 dBm
Chennel ¥ 5=-5338 0Bm
Chennal # 6=-61.16 0Em

Total =1.52 d&m

C] 3 JES
Flle |
recenky pows -l R [on | e LI PP il
R 1 | chen e o
I ) e
MU Carisr Pt
" oy
. | i \
_ | i
E 0
g a i
E
i | I
J |
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Multi-Carrier Power measurement.
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*

freg_per point = span/ (lengthitrace)-1);

points_per channel = channel spac ing/ freg psr_point;

for channel _num = 1 : num channels

enrd

StAart point = (3pan-(channel spacing*num channels))/zZ/freq per point+l;

ch _powers=zaros=({1,num channels): Zpre-=allocate the array for =peead

temp trace = trace (round(start point + (channel num-1) *points per channsl)
roundistart_point + chamnel num*points per channel));
ch _powers (channel nwm) = cpichy, rbw, gpan, temp trace, nbw_ocor, rre wode, alphs,

% mmlti-carrier power measurement

% oh_powers = wep(chw, rbw, =pan, trace, rro_mods, alpha, sy rate, channel spacing)
% ch_powers is & vector of the channel power (in dBm) for each channel in the given trace data
%

% crace 1s assumwed to be a 1-D wveccor of dbm valuess and span,rhw is the

% msgociated span &nd rbw for the trace

% nhw_c:or i= the noise bandwidth correction value, in linear terws

£

% rrc_mode can be 'on' or 'cff', alpha is the roll-off factor for the RRC

L filver and sym rate i= the synbol race thar i= used in the filrver

% The ERC filter is applied to each channel

% channel spacing is the width of each channel

% The spectrum is assuwed to be centered on all channels of

% interest.

aym_rate);

functionh ch powers = wep(chv, rbw, sSpan, Trace, nhW =or, rrc wode, alpha, Sym rate, channel spacing, num channels)

MATLAB function for multi-carrier power.

26



function [eh _powers, trace] = wepneichw, rbu, span, trace, nbw_cor, rre_mode, alpha, sym rate, ..
channel spacing, num channels, noise trace)

multi—carrier power measurement

ch_powers = mepno (chw, rbw, span, trace, rrc_mode, alpha, sym _rate, channel spacing)

ch powers is a vector of the channel power (in dBm] for each channel in the given trace data

trace (&5 an output) is the result of subtracting the noise trace from the input trace

L L

o

trace (a5 an input)] 1s assumed to he a 1-D wvector of dBEm wvalues and span,rbw is the
azzociated span and rhw for the trace

nhw cor 15 the noise bandwidth correction value, in linear terms

rre mode can be 'on' or 'off', alpha is the roll-off factor for the RRC

AT A

s

e

filter and sym_rate is the sywbol rate that is used in the filter
The RRC filter i= applied to =ach channesl

channel spacing is the width of each channsl

The spectrum is assumed to be centered on all channels of

AT A

s

A

interest.

A
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A

s

nnise_trace=10.“(nnise_trace.fiﬂ]:

trace=10." (trace./10) -noise_trace;

nDise_trace=D.Dl.*nuise_trace; Zcreate clip limits 20 dE lower than the noise trace
trace=10%1logl0 (mex (trace,noilse trace)):

freq_per point = span/{lengthitrace)-1);
start_point = {span—{channel_spacing*numLchannels]sz}freq_per_puint+1;
points per channel = channel spacing/freq per point:

ch_powers=zeros(1l,num channels); tpre-allocate the array for =peesd
for channel num = 1 @ nun channels
Cemp trace = trace(round(Start point + (channel num-1) "points per cheannel) L

round(start_point + channcel num*points per channel)):
ch_powers {channel num) = cp(cbw, rbw, span, temp trace, nbw_cor, rrc_mode, alpha, sym _rate):
end

MATLAB multi-carrier power function, with noise compensation.
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Harmonics
Another common RF measurement is of harmonic content. T i [ ]
le i

If we set. up th.e Signature to sh.ow the fundamental and the B - L e — VR —
harmonics of interest, we can simply search for the peak e

value (possibly excluding any LO feed through near dc), s

and then look at multiples of that frequency. Since the i

frequency values of the trace points aren’t necessarily the ‘

exact frequency of the signal, the code has a small search -

window for each harmonic. This search looks for the i

highest value in each of the search windows. ?: o
Signature’s high TOI and low noise floor again allow fast et e S S
and accurate measurements of harmonics. The =

instruments TOI specification directly indicates the mem”:‘;:::::; o
instrument-generated 3rd harmonic (with no attenuation); Fundamaral st 577 Em

you can also use this as a rough indicator of other pamanc ¢ aTeide 22
instrument-generated harmonics. Hamrani S arplivde =478 S

Measurement of Harmonics.

function [harmonic amps, harmonic fregs] = harmonics(cf, span, trace, num harmonics, exclude lo, rbw)

W

harmonics measurement
[fundamental, harmonics] = harmonics(cf, span, trace, num harmonics, exclude_lo, rbw)

e

% fundamwenal i= the freguency of Che fundamental, in Hz

% harmonics is a vector of the levels of esach harmonic, starting with the fundamental, up to nuw harmonics.
% there are num_harmonies + 1 results in harmonics.

3 cxcludl:_lu can be 'on' or 'off', and i=s used to eliminete LO fesdthrough when finding the fundementel;

L when exclude_lo iz 'on', rhw i= used to determine how much of the trace to excluds

i‘—

% of & span are the analvzer center fregquency & spean

% trace is assumed to ke a vector of dBm values

® muwe_harmonics is the number of harmwonics desired

3 exclude_ln ignors the first 10 rbw widths from de if 'on'

a

rhw is used by exclude lo to determwine how much to reject

&

Copyright 2004 Anritsu Company
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freq per point = span/ (lengthitrace)-1):
start freg = cf - Span/2:

if strcmpiexclude lo, ‘on')
exclude freg = rbv * 10; % 10 * rhw is » 100 dB rejection
exclude points = (exclude freq - start freq) ! freq per point:
exclude points = max (ceil (max{exclude points , 0)),2) % eliminate cases yhere the start freguency
iz greater than the exclude fregquency

%
% mnd amlvmys mxclude the 1=t 2 points
Y

trace (l:exclude_points] = -200: set points in the lo exclusion range bhelow any trace
end
pealk location = finditrace==maxitrace)):; % find the location of the maximuw point
peak location = peak locationil]: % 4f multiple points at saee level, pilck 1st
fundmmental = start_freq + tpeak_lncatinn-l] * frequer_pnint: %4 pompute fundawental frecquency from point #
harmonic amps(l)=trace (peak location): % store the swplitude in the result array
harmonic_fregs (1) =fundamental: % store the freguency in the result array

if fundsmental>0
for harmonic num=2 : num harmonics

location of harmonic = round(((fundemental * hermonic num) - start freg) ! freqg per point + 1):
if location of harmonic <= length(trace) - harmonic nus
start_search_loc=maxtlocatinn_of_harmnic - har.rmn:i.c_nu.m » 1)

stop_search_loc=min(location of_ harmonic + harmonic_num , lengthitrace]]:
search trace = trace(start_search loc : stop search_loc);
peak location = find(search trace==max (sesrch trace)); % find largest point near harwonic location
peak location = peak locationil): £ 1f multiple points at same level, pick 1sto
harmonic amps (harmonic num) = trace(location of harwonic - harwonic nuwm + peak location -1);
hurmunic_:frl:q:lthu:rmnic_num] - :lturt,_frl:q + tlucut.:i.un_uf_hurmunic + ...
peak location — harmonic_num — 2) ¥ freq per point;
end
end
end

MATLAB function for measuring harmonics.
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Occupied Bandwidth

The Occupied Bandwidth (OBW) measurement shows the
frequency range that contains a percentage (usually 99%)
of the entire energy in the measured span. For this to be

meaningful, a measurement span must also be specified.

A related measurement, sometimes called emission
bandwidth, shows the frequency range that contains
amplitudes above a particular level— usually 26 dB below
the signal peak.

=[x

gha e ena
File
T e o 2=
Syrrihatic Duls rE ET )
- Uccupied Bandwidth Meaguremant:
_ -
o J i)
= ! 1
3 4 i
o )J' lk
"ES?'E 213 21386 213 21385 21 21405 214 21916 2142
Fraquency (GHz)

Occupied Bandwidth=
4.2 MHz (99%, green)
4.6 MHz (26 dB, red)

21426

Occupied Bandwidth measurement.
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function [percent bw, xdB_bw, freq offset] = obhv(span, percent_power, xdE, trace)

% :percent_hr, HdB_hH, f:eq_offset] = ohv(span, pPercent power, #xdE, trace)

£ caleulates and returns the xdB (in dB) bandwidth and the bandwidth

o

occupied by percent power (in %) for the data in 'trace' which

% has a frequnecy span of 'span'

o

freq offset is the difference ketween the center & the half-power point(in Hz)

e

Copyright 2004 Anritsu Company
Revision 1.0 28 July 2004

& convert trace to Watts
¥ = 1e-3 * 10."(trace/10)];
total power = sum(y):

£ find the half-power point in the trace
integ power = 0;
half power point=0:
vhile integ_power < total power/Z
half power paint = half power point + 1:
integ power = integ power + ¥(half power point):
end

2 frecguency offset cgleulation
freq per_point = span / (length(trace)-1);
freg offset = (half power point - ceil {length (trace) /2)1) * freq per point :

% obw calculation - Start from half-power polint and integrate out until percent power 1= reached

temp_power = 0;

left_nhm_lncatinn = 0;

vhile (tewmp power/total power) < ((l100-percent power)/200) % 200 because left half of 100%
left_obw location = lefc_obw _location + 1:
temp power = temp power + ¥ (left obw location):

end

temp power = 0O

right obw location = length(y) + 1:

rhile (temp_pomerftntal_pnwerj < [[lﬂD—pcrcent_pﬂwchIZDD] % 200 hecause right half of 1
right obw location = right obw location - 1;

[ ]
[}

temp_power = temp_power + ¥ (right_obw_location):
end
percent bw = (right obw location - left _obw location) * freg per point?

2uwdE calculation -

delta power = trace - maxitrace); *normalize to the peak to Simplify search

left = 1:

vhile delta power (left) < (-xdBE) % find left x dB point
left = left+1;

end

right = lengthitrace):

vhile delta power (right) < (-xdBj % find right x dB point
right = right-1;

end

deelta = right-left;

®dB bw = freg per point ¥ delta:

MATLAB Occupied Bandwidth (OBW) function.
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Power Spectral Density

To convert a trace to power spectral density (PSD), use the
RMS detector and offset the trace by 10¥log(RBW), plus
the same correction factor for the noise bandwidth as used
in the channel power measurement. Use the RMS detector
for making PSD measurements.

Note that the name of this function is Signature_ psd, as
there is a MATLAB function already named psd (in the
Signal Processing Toolbox).

Flle k
Sy rihaic Dl
Pawer Spectral Density
o ™
R |
4o k
Foul \

-

21 2135 21405 219 245 242

24
Frequency [GHZ]

Power Spectral Density (PSD) measurement.

o

trace iz a wvector that describes 3 spectrum,
rhw iz the instrument resolution bandwidoh

oA A

A A

trace

A

+*
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if ~exist('nbw to rhu','var')
nhw_to_rbw=1;
end

psd_trace=trace-10%*1logl0 (rbw*nbw_to_rhw) ;
if exist (['ref level','war')
else

psd ref level=Nal:
end

ref_level is an optional input of the instrument's reference level,
input, the psd ref level output is cowputed with the Sawe changes as the

bandwidth into noise bandwidth (in linesr terwms,
note: must use rms detector on i1nstrument to get correct answers

function [psd trace,psd ref level]=%ignature psditrace,rbw,ref level, nbw to rbw)
function [psd trace,psd ref level]=psd{trace) converts trace to pover spectral density

in dEx

Ir

nbw_to_rbw is an optional correction factor that converts the resolution

not dEB)

pad_ref level=ref level-10*1loglO(rbw*nbv_to_rbw):

MATLAB power spectral density (psd) function for Signature.
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IQ Measurements

Frequency versus Time

The display of frequency versus time is very useful when looking

EE%

at the transient response of Voltage-Controlled Oscillators
(VCOs), Direct Digital Synthesizers (DDSs), and Phase-Locked
Loops (PLLs). With the IQ vectors from Signature, it’s easy
to compute frequency vs. time—just use the angle function
to convert to phase, then compute the phase change versus
time. The MATLAB unwrap function is essential to this process.
This function detects a large phase change (close to 360°)
between adjacent points, and adds in the “missing” 360°.

The gate time parameter lets you trade off frequency
resolution versus time resolution. The longer the gate
time you choose, the better the resulting frequency
resolution, but the poorer the time resolution.

Note that the frequency resolution of this technique is
extremely high; the limiting factors are only the signal-to-

Fraquency vs. Trma

i i
30 BEGT D

Time micrmsec)

noise ratio and the phase noise of the Signature local
oscillator. The excellent phase noise performance of
Signature allows frequency measurement capability
exceeding the best frequency counters available.

Frequency versus time display of a chirp signal.

Converts I/Q wectors into fregquency versus time

plane.

cf iz the center frequency of the analyzer.

sample points.
fregs is a wvector with the fregquency values

times is a wvector of the start of each gate interval.

Copyright Z004 Anritsu Cowpany

Fevision 1.0 28 July 2004

Compute gate time
gate_points=round(gate_time/sample_period):
gate time=gate_points*sample period;
num_gates=floor (length (IQ) !gate_points] H

preallocate memory
fregs=zeros (num gates, 1);
times=zeros (num gates,1);

Compute phase

Phi=unurap (angle (TQ) )/ (2#pi) ! s In eycles

Y Compute frecuency
for i=l:num gates;
Phi start_index=(i-1) fgate_points+1;
Phi_stop_ index=round((i) *g‘ate_time/samp le_period) +1;

fregs (i)

freqs (i) = cf + fregsii):

times(i) = (i-1) * gate_time;
end

function [freqs,times,gate_time] = FvsT(IQ, sample_rate,

gate Time)

I2 is a wvector of complex points, each representing a point in the

sample_period is the the time hertween sawples, in seconds.

gate time allows the fredquency to be integrated over several

{Phi (Phi stop index)-Phi{Phi start_ index))/gate time;

$Ahdd center frequency to get F

IQ

function [fregs, times, gate_time] = FvsT(IQ, cf, sample period, gate time)

5F=dPhi/dT

WE.

T at RF

MATLAB function to convert 1Q vectors into frequency versus time.
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CCDF

The Complementary Cumulative Distribution Function

(CCDF) is used to understand the amplitude statistics of fe —
. - E— ]
modulated signals. The graph shows the probability that a E o

peak exceeds the average amplitude by a number of dB.
The graph at the right shows an example CCDF plot.

CCDF is easy to compute by using the MATLAB hist
function on the signal power to get the histogram, then
integrating the histogram to get the CCDF curve.

[
CLOF (4B abrvw wvorage powai)

Average Power= -2.854 dBm
Peak Power= 8.64 dBm
Crest Factor= 11.53 dB

Example CCDF plot.

%
L3
5

o L

%

total count=sumicount];
count=count (Z:end) ;
¥_axis=x_axis(Z:endj: % Eliminate points below average pOwer

count=£liplr (cumswn{fliplr (count))|);
count=count/total count:

function [count,x axis]=ccdf(power, hin size, X _ranges)

cedf, complementary cunmulative distribution function
[count, x_axis,total_count]=ccdf (power, hin size, x_range)
Converts vector of Power into s CCDF plot

Thizs shows the prokability that the signal is abowve the
mean power,

Cutputs:
count- & vector with the codf curve
¥—axis - a vector that shows the khins for the ccodf

Inputs:

power - & wector with power walues, in dBx

hin size - the ccdf x-axis resolution, defaultc 0.1 dB
¥_range - the maximon x-axis value, default Z0 db

Copyright 2004 inritsu Cowpany
Revizgion 1.2 4 Novemwber 2004

Get default wvalues for bin size & x range if not defined

if nargin<z

bin _size=0.1:

end
if nargin<3

K_range=z0;

end

average_power=meantpower] ;
¥ axils=(average power-0.1 : bin sSize ! everage pPOWEr+x range);

count=hist (power,x axis);

4

%
%

Find the histogram starting point

Create histogram bins

Histogram the Power

% Count all points to enshle proshility calculation
% Eliminate points helow average poOwer

% Integrate histogram from the right (higher amplicude)
% Convert integrated histogrem to probability

for CCDF

MATLAB code for creating the CCDF data.
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Since the histogram is done on the power, the CCDF could be computed using a zero-span trace, but this is limited to only
501 points.

The IQ vectors in Signature can provide many thousands of points instead of just 501.

Before using the CCDF function shown here, you must convert the IQ vectors to power by using the MATLAB abs
function, and then convert to dB, e.g.:

Power=20*10g10 (abs (Signature IQ Data))
To plot the computed CCDF curve, use the MATLAB semilogy graphing function:

Average_power=mean (Power) ;

Total_count=length (Power) ;

[Count, X_axis]=ccdf (Power, Bin_size, X_range);
semilogy (X_axis-Average_power, Count)

axis ([0,X_range,1/Total_count,1]);

Spectrograms

A spectrogram is a display that shows the 3 dimensions of amplitude, frequency, and time, all on a single plot. It does this
by showing amplitude using color, and using the other axes for frequency and time.

There are several ways to compute a spectrogram using MATLAB, including the specgram function, the specgramdemo
function, as well as manually computing the FFTs and building the display.

Specgram function

If you have installed the Signal Processing Toolbox
option to MATLAB, you can use the specgram
function. This will compute a spectrogram from the
IQ data, including FFT windowing, and display the
result. Here are a few examples of using the
specgram function:

Use all defaults:
specgram(Signature_IQ Data)

&
o

Tima fgee)

&5

B
=

[ 0356 [ [EEE] E=H 1 10005 1001 16618 [ 110025
Frequency (GHz)

Change the FFT size to 1024, specify that the sampling
rate is 20 ns, so the time axis is correct:
specgram(Signature_IQ Data, 1024, 20e-9)

MATLAB specgram display of a chirp signal, including correct time & frequency axes,
and rotation to show Frequency on the x-axis.

You can also specify different windows and use overlapping to improve the time resolution.

The presentation of the MATLAB specgram function, however, has two limitations. First, the axes are swapped compared
to the traditional instrument presentation—while instruments usually have frequency on the X-axis, specgram has
frequency on the Y-axis. Second, the frequency range for specgram for IQ data is from 0 Hz to the sampling frequency
(Fs), while the IQ vectors in Signature range from -Fs/2 to Fs/2. These limitations are easy to fix by using the MATLAB
transpose operator (a single quote), fftshift, and scaled image (imagesc) functions:

Y=20*10ogl0 (abs (fftshift (specgram(Signature_IQ Data),2))"');
imagesc (Y)
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Labeling the Spectrogram Axes

The figure on the previous page has the X-axis labelled with the analyzer center frequency. The normal labelling of the
specgram axes are related to the sampling time. You can manually label the axes as well, by using the following commands:

set (gca, 'XTickLabel’, label_string)
set (gca, 'YTickLabel’, label_string)

The label_string can be in a variety of formats, such as a

Ello Window Help

string array. Check the MATLAB help documentation on SDE tra 40
Axes Properties for details.

MATLAB Spectrogram Demo

The Signal Processing Toolbox in MATLAB also includes a
more advanced spectrogram display, called
specgramdemo. This includes various display additions,
including a time overview as well as “slices” of time and
frequency delimited by markers. The figure shows the
results of running specgramdemo on a chirp (frequency
sweep) signal.

el d

Pi B B § 8§ 8

Signature Option 40 includes a modified version of
specgramdemo that shows the spectrum of the correct
frequency range, including the Center Frequency on Signature_specgramdemo result on an 802.11a signal.
Signature.

]""" W= . "

You can call this with the following line: Signature_specgramdemo (double (Signature IQ Data), ...
1/Signature_Setup_Data.Sampling period)

Building your own Spectrogram

A third way to get a spectrogram is to create it from scratch. You can build a matrix using multiple FFTs, and then display
the spectrogram by using imagesc. This allows, for example, building up a spectrogram from multiple acquisitions. For
example, assuming Signature is in FFT mode:

Y=Signature_Tracel;

for 1=1:100
Y=cat(1l,Y,Signature_Tracel) ;
pause(0.1) ;

end

imagesc (Y) ;

The pause statement allows the instrument to take new data. You may need a longer pause if you are using very narrow
resolution bandwidths. You can also use handshaking instead of the pause statement; this will work with any RBW.

Spectrograms from 1Q vectors vs. from Traces

As we have seen in the above examples, there are 2 different methods of building a spectrogram. Using the IQ vectors
provides continuous information over a short time frame (up to about 1 second). Using instrument traces provides a
much longer time — of minutes, hours, or even days.
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Using Simulink

Simulink is another product from The MathWorks that has
advantages for developing demodulation models. Simulink
uses a block-diagram-editor and deals with time as a
simulation parameter.

The figure shows the Simulink Library Browser. This is
where you can find blocks and add them to your model.

This section will show you how to get Signature
information into Simulink, perform a simple
demodulation, make some measurements, and return the
results to MATLAB.

FSK Demodulation

The figure shows an example Simulink model for
demodulating and measuring a signal that uses Frequency-
Shift-Keying modulation.

The blocks in the model are:

e From Signature
This is a Simulink Signal from Workspace block, which
lets you get data from MATLAB (and therefore
Signature), and set the sample rate. Note that this block
is from the MATLAB Signal Processing Blockset.

® To Frequency
This is a Simulink subsystem, which contains several
other blocks. At this level, it is a simple FSK
demodulator—it converts baseband IQ vector data into
frequency-versus-time data.

® Measure FSK
This is another subsystem, which takes the frequency-
versus-time values and measures the center frequency
error and the deviation.

® Three “To MATLAB” blocks.
(“FvsT To Workspace”, “To MATLAB2”, and
“To MATLAB3”)
These are Simulink “To Workspace” blocks, which
make the measurement results available to MATLAB.

L ISmulini (D ToSer:

B[]

File Edit Wiew Help

WEr

Gain: Element-wize gain v = K."u] or matrix gain [y = Kuar p = u'k)

= W Sirnulink

..... | Commanky Used Elacks
..... | Continuous

..... ] Discontinuities

..... ] Discrete

----- 23] Logic and Bit Operations
..... | Lookup Tables

..... | Math Operations

..... | Model verification

..... 23] model-wide Utilities

..... | Ports & Subsystems
..... | signal attributes

..... | signal Routing

----- % User-Defined Functions
- 22| Additional Math & Discrets
- Tl Communications Blockset

[+ 18 RF Blockset

[+ Tl Real-Time workshop

[+

[+

- E| Signal Processing Blockset
- Tl Simulink Extras
----- B stateflow

Ready

I Bus Creator

I Bus Selector

III Canstant

E| [iata Type Conersion
I Dremux

E Dizcrete-Time Integrator

E Ground

1 3int

:‘ Integrator

:l Logical Operator

I Fed L

1y 0utl

El Praduct

:l Relational Operator

EE Saturation

El Scope

[ ] Subspstem

@ Sum

F] switch

E‘ Terminator

:‘ Uit Delap

Simulink Library Browser.

Fis dempsd
Ela Bt yom Gnson Fme Took pue
DaEs ve Poafee HeoBS RA® &

FSK Demodulation
Version 2.0 FysT
10 May 2005
Copyright Anritsu Company FvsT To
Workspace
CF_Error
Out1 CF
From Signature P in1 Outl T P in1 To MATLAB2
L
To Frequency Measure FSK Deviation
To MATLAB3

Simulink FSK demodulation & measurement block diagram.
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“To Frequency” Block

The conversion to frequency subsystem:

Converts the IQ vectors to phase

“Unwraps” the phase. This means that sharp transitions
are eliminated, which allows the phase to be more than
360 degrees

Reduces the sampling rate to be twice the symbol rate
Takes the difference between adjacent phase readings

Converts the phase changes to frequency. This conversion
is based on the phase change and the sample rate.

If you double click on the Downsampling block, you will
see that there is an equation to select the downsample
factor. This equation is based on the sampling rate from
Signature and the expected symbol rate of the signal. You
must specify the expected symbol rate in a MATLAB
variable named ‘ sr’. The equation shown gives 20
samples per FSK signal.

“Measure FSK” block

This subsystem sorts the frequency data into 2 groups —
those above the center frequency (which is zero Hz at
baseband), and those below the center frequency. Each of
these groups is then averaged to get an estimate of the
high frequency and low frequency states. These two
frequency estimates are then averaged to get a
measurement of the center frequency error (Outl); the
difference is taken to get the frequency deviation (Out2).

Sk demod o Ereg ey =

Eie Edt Yew Smdation Format Toabs  Help

O FRES & @ 2 e cfhes. B B@  BEBT®

1a to Frequency

Yersion 1.0

6 August 2004

Copyright Anritsu Company

-1
Tl I\E\- | L ce"[E'| * T C)
Compla 1o ot
Mapnituda-Angle Unmrap Diwns atnple Cifterence
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Getting MATLAB data into Simulink

The Signature IQ vectors in MATLAB must be reformatted before they are transferred to Simulink. This is because
Simulink requires complex inputs to be in a structured format. The following code shows how to do this.

 into format for Simulink

Il

$5im prep--convert Sighnature IQ vector

I

% Copyright 2004 Anritsu Company

% Revision 1.0 28 July 2004

IQ length=length(3ignature IQ Data):

sample time=S5Signature Setup Data.Sampling period;
Simin.time=(0:sample timwe: (IQ length-1) *sawple time)':;
gimin.signals.values=3Signature IQ Data';
simin.dimensions=[1]:

Measurement Results

The figure to the 'rlght is a MATLAB graph that shows the — Aol
frequency-versus-time measurements, as well as the Fle Edt Vew Insert Tock Deskicp Window Help .
resulting center frequency error and frequency deviation. DEEaE K fRadaE 0B 8O

N 10° CF Errar: -408 kHz  Deviation: 0.52 MHz

Frequency Deviation frorm Center (Hz)
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Instrument Control

Controlling Signature through Web Services

In addition to a GPIB interface, Signature can also be controlled by a Web Services connection. This is available both via
the LAN, as well as directly on the instrument. This means that you can also use MATLAB to control Signature
measurements right on the instrument.

The figure shows a simple example of using MATLAB to control Signature via the Web Services interface. It sets up the
Web Services (if they aren’t set up already), presets the instrument, then sets the center frequency to 1 GHz.

If you want to use this code to talk to Signature via a network, instead of on the instrument, change the host from
“localhost” to the Instrument Name. You can find the Instrument Name by going to the System menu, selecting
Configuration, IO Config, and then Instrument Name.

sWebServicesExample
$Preset Signature & set Center Frequency to 1 GHz using the Web Services interface

% Copyright 2005 Anritsu Company
% Fevision 1.0, 24 June 2005

host = "localhost'; % Signature hostname.

% Set up a web services object (named 'spa') for spectrum analyzer controls

url = ['http://' host '/SignatureSpectrum/SignatureSpectrum.asmx2wsdl']:
createClassFromwsdl (url; $Creates '.m" files in the folder @SignaturesSpectrum
%in the current directory
spa = Signaturespectrum; $Creates an object that refers to the Signature Spectrum analyzer

fweb services, at the address of 'host!

% zetup a web services object (named 'sys') for system controls

url = [*http://" host "/SignatureSystemControl/sSignaturesystemControl.asmxzwsdl'];
createClassFromwsdl (url) ; tCreates '.m" files in the folder @BSignatureSystemn

$in the current directory
5vs = SignatureSystem: $Creates an object that refers to the Signature System

$web services, at the address of "host!

Freset{sys) $Preset Signature
SetCenterFrequency (spa,l, "GHz"); %$Set Signature Center Frequency to 1 GHz

Use the Web Services interface to control Signature from MATLAB running on the instrument or another computer.
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You can get the list of Web Services commands on Signature several ways:

¢ The Signature programming manual. This is available both as a printed manual, and through the Documentation item
in the Help pulldown menu.

® After you run the CreateClassFromWsdl command in MATLAB, there will be a new directory created under the current
directory (usually C:\Signature\MathWorksConnectivity). You can see what commands are available by using MATLAB to
look at the files in these directories. Since Signature has 3 Web Services, there can be 3 directories, called:

— @SignatureSystem
— @SignatureSpectrum
— @SignatureModulation

® Use a web browser to look at the web descriptions of the available services. You can look at the available commands, see
the syntax for each command, and in many cases test the operation of the command. In a web browser running on the
instrument, look at:

— http://localhost/signaturesystemcontrol/signaturesystemcontrol.asmx
— http://localhost/signaturespectrum/signaturespectrum.asmx
— http://localhost/signaturemodulation /signaturemodulation.asmx

One of the benefits of the Web Services interface is that it is “location independent”. The example code is written to run
directly on Signature, but by changing the definition of the host variable in the example program, you can control a
Signature connected to the network. Note that the host name is embedded in a file that MATLAB creates when you use
the createClassFromWsdl function.

The createClassFromWsdl function does have a fair amount of overhead (5-10 seconds for SignatureSpectrum and
about 1 second for SigantureSystem), so you may not want to use it every time you run your code. Aslong as you are
referring to the same instrument, this works fine.

Note that there is a bug in the Web Services implementation in MATLAB R14SP2 that causes problems when using
Signature. You can go to MATLAB Central to get patches to fix this bug at:
http://www.mathworks.com/matlabcentral/fileexchange /loadFile.do?objectld=7938&objectType=FILE

Versions of MATLB beyond R14SP2 are expected to include these patched files.

Also note that there is a short delay (typically about 20 ms) after making a Web Services call before
Signature_Setup_Data is updated.

You can also read data from Signature via Web Services. For example, to read Trace 1 into a variable called Tracel, use the
following code (after using CreateClassFromWsdl & spa=SignatureSpectrum as shown above).

Trace=GetTraceData (spa,l);
str2num(char (Trace.float)) ;
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GPIB Control of Other Instruments from MATLAB

The Instrument Control Toolbox in MATLAB allows
controlling instruments through GPIB and other
interfaces. If you have the GPIB interface in Signature
(Option 3), you can easily control other instruments, such
as signal sources. You need to set Signature to be the GPIB
System Controller by:

¢ Selecting System, Configuration, IO Config, GPIB.

e In the National Instruments Measurement & Automation
Explorer that comes up, click on ‘Devices and
Interfaces’, right click on GPIBO0, and select Properties.

¢ Click on the System Controller box, click OK, and close
the Measurement & Automation Explorer.

® On the lower right corner of the display area, Signature
shows that it is now in System Controller mode.
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You can tell when Signature is the GPIB System Controller mode by the annotation in the
lower right corner of the display area.

Example of Controlling Instruments—Measuring ACPR versus Power

An example of using MATLAB to control both other
instruments via GPIB (using the MATLAB Instrument
Control Toolbox), and Signature using Web Services is
available. The example uses an Anritsu MG3700A Vector
Signal Generator to generate a WCDMA modulated signal,
and then measures Adjacent Channel Power Ratio of a
Device as the input power level is changed. You can look at
the example in the file ACPvsP.

ACPR vs Pyt @ fo =2140 MHz; Pjy = -24 to -10 dBm
-25
YA
-30
%
-35 /
o -40
o
o //
o
Q45
-50 = Lower Channel ||
~—Upper Channel
-55
-60
-2 0 2 4 6 8 10 12
Main Channel Output Power (dBm)
ACPR vs. Output Power of a class-A amplifier using the ACPvsP script.
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MATLAB Demonstration

The Signature “Connectivity to MATLAB” option (Option 40) includes an example graphical user interface that uses many
of the above functions and automatically updates measurements using timers. An example of this demonstration doing a
channel power measurement is shown in the figure.

To invoke this example, type the following on the MATLAB
command line:

Signature_Demo

If you wish to use a different trace than Trace 1, or start the
demonstration using a specific measurement, you can use the
longer form of the command, shown below. Note that the
last parameter is optional and is the name of one of the items
in the dropdown box in the upper left corner of the demo GUL

Armglituds {dFim]

Signature_Demo Signature Tracel... L
Signature_Setup_Data Signature IQ Data...
'channel power'

21% 217 213 218 214 2141 214z 2143 244 2145

Channel Power= -2.271 dBm

MATLAB demonstration GUI for Signature.

Using the MATLAB Demonstration

The various demonstrations use different data from Signature. Most of the demonstrations use the spectrum output. The
“plot trace” demo works with zero-span data. The CCDF and Frequency vs. Time demonstrations require IQ vectors from
Signature. To do this, make sure that the IQ vector output is turned on in the MATLAB setup dialog and put the
instrument into Modulation Measurement mode.

The spectrogram works on either spectrum data or on IQ vectors. If spectrum data exists, a spectrogram is built out of successive
spectra. If spectrum data doesn’t exist, but IQ) data is available, the spectrogram is built from the IQ data; this allows a much
shorter time span for the measurement. To get IQ data, the instrument must be in the Modulation Measurements mode.

Note that once a spectrum is output to MATLAB it is never cleared by Signature. So if you want a spectrogram from 1Q
data, you must either start the MATLAB interface with the Trace output turned off, or after switching the instrument to
Modulation Measurements mode, you would type the following line of code in the MATLAB command window:

clear Signature_Tracel
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How to get support

Anritsu and The MathWorks are both committed to supporting you using MATLAB on Signature. For support on Signature
connectivity to MATLAB, contact Anritsu by going to www.anritsu.com, clicking on “Contact Us”, and selecting your country.
This will list your local phone number and e-mail address. In the U.S., you can also call 1-800-ANRITSU (267-4878).

For support on the details of MATLAB, contact The MathWorks via their web site.
Go to www.mathworks.com and click on “Support”.

Conclusion

By combining MATLAB with the Anritsu Signature High Performance Signal Analyzer, you can do your own analysis
quickly and easily right on the instrument, including live updates of traces and measurements.
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