
TECHNICAL NOTE

MS2781A Signal Analyzer

Custom Measurements and Analysis
Using MATLAB® on Signature™

Introduction
Signature is a combined high performance Spectrum Analyzer for characterizing RF signals and a high performance
Vector Signal Analyzer for characterizing digitally modulated signals. Signature expands the ability to analyze RF signals by
offering seamless connectivity with MATLAB® and Simulink® from The MathWorks. Engineers can view measurement
results through custom MATLAB and Simulink analysis giving exceptional insight into the performance of new designs.

This technical note describes how to make this connection, and uses a number of examples to illustrate the power of this
combination. Simulink and MATLAB options, such as the Signal Processing Toolbox, are also illustrated. If you are not
already using MATLAB, you can find out more information from the MathWorks web site, at: www.mathworks.com.
A limited-time trial version of MATLAB and other MathWorks products is also available to Signature users. Go to the
following web address to find details about this trial offer: www.mathworks.com/anritsu.

Version 2.0, September 2005

2

Introduction .1
MATLAB Analysis Examples .3
Installing MATLAB on Signature .5
Configuring Signature to use MATLAB .5
The MATLAB Desktop Window .5

Getting Setup Information from Signature into MATLAB .6
Getting Data from Signature into MATLAB .6

Viewing the trace values .6
Drawing a Signature trace in MATLAB .7

Plot .7
Loops .8
Timers .9

Synchronization .10
Trace Averaging with Handshaking .11
Storing Multiple Traces with Handshaking .12
Manual Sweep with Handshaking .12
Timers with Handshaking .13

Zero-span traces .14
Modulation Measurements .15

IQ Vectors .16
Plotting IQ Vectors .17

Plotting the Magnitude of IQ vectors .17
FFT of IQ vectors .17
FFT with Windowing .18
I and Q magnitudes .18
I and Q Polar plot .19

Saving captured IQ vectors to the Anritsu MG3700A Vector Signal Generator .19
Example Applications .20

Spectral Measurements .20
Channel Power .20
Channel Power with Filtering .21
Channel Power Function with Optional Filtering .22
Adjacent Channel Power (ACP) .23
Noise Compensation .24
Plotting a Trace and Measuring ACP with Noise Compensation .25
Multi-Carrier Power .26
Harmonics .28
Occupied Bandwidth .29
Power Spectral Density .31

IQ Measurements .32
Frequency versus Time .32
CCDF .33

Spectrograms .34
Specgram function .34
Labeling the Spectrogram Axes .35
MATLAB Spectrogram Demo .35
Building your own Spectrogram .35
Spectrograms from IQ vectors vs. from Traces .35

Using Simulink .36
FSK Demodulation .36
“To Frequency” Block .37
“Measure FSK” block .37
Getting MATLAB data into Simulink .38
Measurement Results .38

Instrument Control .39
Controlling Signature through Web Services .39
GPIB Control of Other Instruments from MATLAB .41
Example of Controlling Instruments—Measuring ACPR versus Power .41

MATLAB Demonstration .42
Using the MATLAB Demonstration .42

How to get support .43
Conclusion .43
References .43

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

Table of Contents

MATLAB Analysis Examples

These examples illustrate what is possible using Signature
with MATLAB. The examples include making
measurements of harmonics, channel power, adjacent-
channel power ratio (ACPR), spectrograms, and custom
demodulation. Results of these measurements are shown
on this and the following page.

These displays are created using the MATLAB graphical-
user-interface creation software, called GUIDE. This user
interface is then combined with the measurement
algorithms shown later in this application note. You can see
all of these displays and more on Signature by using the
demonstration code that comes with the “Connectivity to
MATLAB” option (Option 40). For more details on this,
refer to the section “MATLAB Demonstration.”

3

Example MATLAB harmonic measurement.

Channel Power measurement using MATLAB. MATLAB Adjacent-Channel Power measurement.

4

Note that all of the example MATLAB code in this
application note is available as part of the Signature
“Connectivity to MATLAB” option, usually in the form of
functions. You can tell the name of the function or script
by referring to the 1st line of the example code.

All of this code can be found on Signature, in the directory:
C:\Signature\MathworksConnectivity

MATLAB spectrogram of a swept signal.

FSK Modulation Measurements using MATLAB and Simulink.

The MATLAB Desktop Window

When you start MATLAB from Signature, you get the
normal MATLAB desktop. The Signature information is
automatically available in the MATLAB Workspace, as you
can see in the figure.

You can easily see the variables being used, type in
commands, and see the history of commands you’ve used
from this window.

5

Installing MATLAB on Signature

Install MATLAB with any options, using any MATLAB licensing option, onto the C: drive in Signature. It is best to install
MATLAB into the default directory.

Note that for the seamless connectivity between Signature and MATLAB shown in this note, your Signature needs
option 40—Connectivity to MATLAB.

Configuring Signature to use MATLAB

Once you have MATLAB installed, start it from within Signature by clicking on
the Signature Tools/MATLAB pulldown menu.

You will get all of the displayed Signature traces ported into MATLAB, for
example as Signature_Trace1 or Signature_Trace2. You can also get IQ
vectors by using the Advanced tab in the dialog. See the ‘IQ Vectors’ section for
more details on how to get IQ vectors.

You can then set up the instrument in the normal way. When sending traces to
MATLAB, all active instrument traces and instrument setup data will all
automatically appear in the MATLAB environment. This makes it much easier
to get data out of the instrument into this industry-leading analysis tool.

You can also enable handshaking between Signature and MATLAB. Refer to
page 10 for more details about this.

Signature Configuration dialog for connecting to MATLAB.

MATLAB Desktop Window on Signature.

Viewing the trace values

If you double-click on a trace name (e.g. Signature_Trace1)
in the MATLAB Workspace pane, you will see the values of
the variable in the Array Editor pane.

These values are in the current measurement units, which
you can check in the Signature_Setup_Data structure.

Note that the values in the Array Editor pane are only
updated when you press Enter in the MATLAB Command
Window, so instrument changes may not be immediately
reflected there.

6

Getting Setup Information from Signature into MATLAB
When you start MATLAB from Signature, the instrument
setup information is automatically created in a MATLAB
structure called Signature_Setup_Data.

For example, if you need to know the center frequency
that the instrument is tuned to, you can refer to this
variable:

Signature_Setup_Data.CenterFrequency

This variable has the value (in Hz) of the current center
frequency.

If you double click on a variable name in the Workspace
pane on the MATLAB desktop, or type the variable name
on a MATLAB command line, you can see the details of
the structure and the current values.

Having the setup information automatically available in
MATLAB means that you can set up the instrument to
make measurements the normal way, and all of the setup
information is conveniently available in MATLAB. This is
much simpler than having to query the individual setup
items, as you had to in the past.

Example Signature setup information in MATLAB.

Double click on a variable in the Workspace pane to see the value(s) in the Array Editor pane.

Getting Data from Signature into MATLAB
When you start MATLAB from Signature, you can make the active traces or IQ vectors automatically available in the
MATLAB workspace. Then all you have to do is use them. In the next few pages there are a number of examples of how
you might use the Signature data in MATLAB.

Drawing a Signature trace in MATLAB

There are several ways to draw a Signature spectrum trace
in the MATLAB environment, including using plot, using a
loop, or using timers.

Plot
The simplest is to use the MATLAB plot function:

plot(Signature_Trace1)

This is simple and effective, but doesn’t scale the x-axis
correctly, nor update the plot when new data is available.

Note that all active Signature traces are available, up to
Trace5. Note that blank traces are not cleared from the
Workspace.

To properly scale the frequency axis, you need to create a
vector that defines the frequency of each trace point. By
using the information in the Signature_Setup_Data
structure, this is simple—you just create a vector using the
start and stop frequencies, and a step size based on the
number of display points and the span . For example, the
7 lines of MATLAB code shown on the right create a
function to do a scaled plot. The resulting plot is shown as
well.

7

Just type plot (Signature_Trace1) to plot a trace.

A few lines of MATLAB code add a scaled x-axis.

8

A loop updates the graph automatically.

Loops
By using a loop, you can automatically update the plot when
the instrument updates the trace data. The figure at the
right shows this. This code has two interesting aspects. The
first is the loop statement, which is while(ishandle(h)).
This loop repeats until the drawing window is closed, which
is very natural for the user. The pause(0.1) statement
allows MATLAB to actually draw the figure. MATLAB only
updates graphics when computation isn’t being done, so
without the pause, the graph would never be updated.
MATLAB would also consume all available CPU resources,
slowing the instrument display.

A slightly improved version of the above (shown at the
right) doesn’t re-draw the entire plot, but merely updates
the trace data. This reduces the plotting overhead by
about 50%.

By using the code h=plot(Signature_Trace1), the
variable h becomes a graphics handle that references the plot.
The later code set(h,'YData',Signature_Trace1)
updates the trace data, and the pause(0.1) makes
MATLAB redraw the plot.

Using set reduces plotting overhead by about 50%.

9

Timers
Loops let you have a live display, but only have one at a time and the MATLAB command line is blocked while this code is
running. You can stop the code by hitting “Ctrl-C”, but there is a more user-friendly way—by using a MATLAB timer. The
MATLAB code below shows how to use a timer to re-plot the trace every 100 ms. With this code, if you close the figure
window the timer will stop automatically.

To call this function, you must use the name of the variable, using either of the following two ways:

timerplot(‘Signature_Trace1’)
timerplot Signature_Trace1

This is because MATLAB passes parameters to function by value. This means that once the function is called, you can’t
change the value of the parameter because the function has a copy of the data. To get around this, the timer code uses a
MATLAB function called evalin. This function evaluates a MATLAB command and returns the current value. The timer
code makes use of this by evaluating the current value of Signature_Trace1. An alternative to this would be to use a Global
variable, but this is generally not good programming technique.

A MATLAB timer lets you automatically update multiple plots as well as retain use of the MATLAB command line.

10

Synchronization

Another improvement of the above is to use the “Handshake” function in the Signature interface to MATLAB. This
handshaking allows you to know when Signature is finished making a measurement. Handshaking can be useful for such
things as storing or averaging multiple traces, where you need to know when the trace data is new. You can turn
Handshake on or off from the checkbox on the bottom of the MATLAB setup dialog.

This figure shows how to plot traces with handshaking. The concept is simple—just wait for
Signature_Setup_Data.DataReady to be set to 1. When you have copied or used the data from Signature, use the
line Signature_Control('StartSweep'). This line of code calls a MATLAB function that has been added as part of
the Signature Connectivity to MATLAB option, and it just tells Signature to start a new measurement. Some simple
MATLAB code to use this functionality is:

while (Signature_Setup_Data.DataReady~=1 %New data ready?
pause (0.01); %Give up CPU

end
%Code to use Trace or IQ Vectors
Signature_Control(‘StartSweep’); %Start a new sweep

In many of the examples, this is reordered somewhat for code simplicity, but this is the basic concept.

Plotting can also be synchronized with Signature sweeps.

11

Trace Averaging with Handshaking
We can then take the additions for synchronization and add an averaging function, seen in this figure. Note that due to
the autoscaling in MATLAB, it may appear that averaging is not happening; check the y-axis scale to see that it reduces as
the averaging progresses.

Synchronization between Signature & MATLAB allows trace averaging.

12

Storing Multiple Traces with Handshaking
Or we can use the synchronization to store multiple acquired traces, as shown in this figure. This lets you gather data
quickly, then analyze later when you have more time. You could also store sets of captured IQ vectors in a similar fashion.

Store multiple traces from MATLAB by using synchronization.

Manual Sweep with Handshaking
When you are synchronizing a MATLAB script to Signature, you may want to wait until the user pushes the Sweep key to
do something new. For example, you may want to store traces from multiple experiments, where the user needs to change
the device being tested.

In this case, you can replace the line that says

Signature_Control(‘StartSweep’); with
Signature_Setup_Data.DataReady=0;

This keeps the code waiting until a new measurement is finished, which won’t happen until after the user presses the
Sweep key on Signature.

13

Timers with Handshaking
If we want to use both a timer and the Signature handshaking function, we need to modify the timer code a bit. The
changes are very simple, so we haven’t reproduced the entire code here. Only the ‘plotfunction’ is modified by adding the
code to check if the Handshake is on, wait for DataReady, and start a new sweep. The function is also called with both the
trace name and setup name, such as:

timerplot_sync(‘Signature_Trace1’,‘Signature_Setup_Data’)

If you wish, you can look at the complete code on a Signature with option 40.

By changing the plotfunction in timerplot.m, timer-based plots can work with synchronization.

14

Zero-span traces

For a zero-span trace, the Y-axis is identical to a spectrum trace, but the span is zero, and the X-axis is now in time.
You can again use the Signature_Setup_Data structure to check the span, and then find the trigger delay and
time-per-division values.

The code below shows an expanded version of the previous PlotTrace code that also plots scaled zero-span traces.

Example MATLAB code to plot either spectrum or zero-span traces.

15

Modulation Measurements

Traces from the modulation measurements option (option
38) are created as separate variable names.

These are:

Signature_VsaTimeDomain_Data
Signature_VsaVector_Data

The Signature_VsaTimeDomain_Data is the power
versus time waveform. This is normalized so that the peak
value is 0 dB. You can see a plot of this in the figure to the
right. This graph was created by using
plot(Signature_VsaTimeDomain_Data)

The Signature_VsaVector_Data is the vector diagram
waveform. You can plot a constellation by selecting the
symbol points and plotting just ‘markers’ in MATLAB, as
shown in the code below.

MATLAB Constellation plot.

MATLAB & Signature Vector Diagrams.

Plot a constellation in MATLAB with this code.

A plot of Signature_VsaTimeDomain_Data shows the equivalent of a zero-
span waveform.

16

IQ Vectors
The IQ vectors from Signature give you the most freedom to make complex measurements, such as FFTs or demodulation.
The IQ vectors also allow larger data sets, such as for making CCDF measurements (refer to the CCDF section for more
details on this measurement). You can get up to 10 million IQ vectors in a few seconds, as well as 30 MHz capture
bandwidth if the Signature has Option 22. If you enable IQ vector output, you will get a MATLAB variable called
Signature_IQ_Data, as well as the setup structure Signature_Setup_Data.

Having easy access to IQ vectors provides the ultimate capability in creating custom measurements. Since the IQ vectors
describe the I and Q state (or equivalently the amplitude and phase), you can extract any information about the signal that
you want. You can determine the frequency variation versus time, create spectrograms, look at amplitude statistics, or even
demodulate the signal. Measurements that describe how to do this are shown later in this note.

To send IQ vectors to MATLAB, select the ‘Advanced’ tab on the MATLAB setup
dialog in Signature. Then turn on Send to MATLAB IQ Data. You can now
select the sample rate, capture length, choose single or continuous sweep, and
pick the input source (RF or rear-panel IQ). Handshaking is still available in
the IQ vector output mode.

You may want to note several things about the IQ vector output to MATLAB mode:

• The sample rate that you choose is the sample rate of the IQ vectors output to
MATLAB. Note that this is 1/2 of the sample rate of the IF signal inside
Signature, before the signal is converted to IQ vectors.

• No traces are displayed; the instrument is now dedicated to output IQ vectors
to MATLAB.

• If you close the Signature MATLAB dialog, the instrument automatically exits
IQ vector output mode; this ensures you don’t get a blank display.

• There are no calibrations applied to the IQ vectors. This means that the
absolute amplitude may be off by several dB, and that the frequency response
(especially near band edges) may vary in both amplitude and phase. The
frequency response over the center 10% of each band is very flat, however.

• For the fastest sample rates there may be transients at the beginning and end
of the data. For the 12.5 and 25 MS/s sample rates, there is a transient at
both the beginning and end that is about 20 samples long. For the 50 MS/s
rate, the beginning transient is very small, and is only about 5 samples long; at
the end of the data the transient is about 10 samples long. If you are using
these sample rates, you may want to eliminate these points from you
measurements. The use of negative trigger delay (pre-trigger) and extending
the capture time can help with this.

There are no visible transients for lower sample rates.
Signature MATLAB Setup dialog for IQ vector output.

17

Plotting IQ Vectors

Some simple examples of using IQ vectors are plotting the amplitude of the signal versus time, the spectrum of the signal
(by using an FFT), and the amplitude of the individual I and Q waveforms.

Plotting the Magnitude of IQ vectors
The figure below shows how to plot the amplitude of the IQ signal; this is the same as the envelope of the signal into
Signature. This allows handshaking, but instead of plotting the traces, it plots 10*log10(abs(Signature_IQ_Data))

Plot the magnitude of IQ vectors.

FFT of IQ vectors
You can also plot the spectrum of the IQ vectors by changing the plot command to:

plot(10*log10(abs(fftshift(fft(Signature_IQ_Data)))));.

An example of the results is shown in the figure to the right.

FFT of IQ vectors, without windowing.

18

FFT with Windowing
An enhancement to this is to use an FFT window, such as
the well-known ‘Hann’ window. Many windows are
available in the MATLAB Signal Processing Toolbox.
These windows reduce the “leakage” or the sidebands on
the signal above. Different windows have different effects
on the spectrum. A complete discussion of window choices
is beyond the scope of this technical note. An example of
a windowed FFT is shown in the figure at the right. Note
that the sidelobes are about 20 dB lower than in the
previous FFT plot.

To use a window, replace the FFT “plot…” line on the previous page with the following 5 lines. An automatic FFT plot of
the windowed IQ vectors is available by calling the script plot_IQ_fft.

plot_IQ_fft.WindowLength=length(Signature_IQ_Data);
WindowArray=window(@hann,length(Signature_IQ_Data))';
WindowAmplitudeCorrection=WindowLength/sum(WindowArray);
Trace=10*log10(abs(fftshift(fft(Signature_IQ_Data.*…

WindowArray*WindowAmplitudeCorrection))));
plot(Trace);

FFT of IQ vectors, using a Hann window.

I and Q magnitudes
Sometimes you want to see the I and Q waveforms directly.
You can do this by replacing the plotting lines with:

plot(real(Signature_IQ_Data));
hold on;
plot(imag(Signature_IQ_Data),'-r');
hold off;

This is available by calling the script Plot_I_and_Q.

Overlaid plots of the I & Q waveforms.

19

I and Q Polar plot
You may also want a polar plot of the IQ vectors. Since
MATLAB automatically makes polar plots of complex
variables, you can do this by replacing the plot lines with

plot(Signature_IQ_Data);
set(h,’DataAspectRatio’,[1 1 1]);

The second line is necessary to make the I and Q axes
equal.

This is available by calling the script Plot_IQ_polar.

Polar plot of IQ vectors.

Saving captured IQ vectors to the Anritsu MG3700A Vector Signal Generator

A powerful use of captured IQ vectors is to replay them.
You can do this with an arbitrary-waveform based Vector
Signal Generator, such as the Anritsu MG3700A. The code
to the right, csvout, saves the Signature IQ vectors in an
ASCII file. This file is suitable for loading into the
MG3700A by using the ‘Convert’ function in the
IQProducer software that comes with the MG3700A.

Since the captured signal is probably not periodic, there will
be a “glitch” at the end of the waveform as it wraps around
to the beginning. There are several ways to deal with this:

• Capture as long a waveform as possible. With Signature,
you can capture up to 10 million IQ vectors, and the
MG3700A has an even longer memory available. By
capturing a longer waveform, the glitch doesn’t happen
as often, and therefore has lower power.

• Use a trigger signal for measurements. The MATLAB code shown here creates a signal out of the rear panel of the MG3700A
connector labeled “Connector 1”. This signal goes high at the beginning of the waveform and has about 50% duty cycle.
You can use this signal to trigger Signature or other measurement equipment, so that you can avoid the wrap-around glitch.

• Capture a bursted signal with triggering. If the signal is bursted, you can make the beginning and end of the waveform
almost identical by ensuring the waveform is off at these points—leaving only noise. This makes the wraparound glitch
energy very small. You can use the triggering functions on Signature, including pre-trigger (negative trigger delay), to
capture just the bursted part of the signal.

• Capture a periodic signal. If you can capture exactly N periods of the signal, there won’t be a wraparound glitch. There
are 2 ways to do this:

– If you can phase lock Signature and the source to the same reference frequency, and if there is an integer relationship
between a Signature sample rate and the Device Under Test symbol rate, you can acquire a set of samples that describe
exactly “N” periods of the signal. For example, if the DUT symbol rate is 101 kHz, and you pick the 1 MHz sample
rate in Signature, every 1000 samples in Signature will be exactly 101 symbols from the DUT.

– If the DUT has a modulation format that Signature can demodulate (using the Modulation Analysis option, option 38),
then there is no need to phase lock or pick sample rates carefully. Just demodulate the signal and use the
Signature_VsaVector_Data output. To write this file, edit the csvout code to use Signature_VsaVector_Data
instead of Signature_IQ_Data.

• “Window” the signal. This is similar in concept to the Windowing used for FFTs. By tapering the ends of the waveform to zero,
you can reduce the wraparound glitch energy. This does, however, add low-rate amplitude modulation to the signal, which
may or may not be acceptable for your use. By capturing a longer signal, you can reduce the rate of this amplitude modulation.

Write a CSV file to prepare captured IQ vectors & triggering for the MG3700A Vector
Signal Generator.

20

Example Applications
Spectral Measurements

Signature has a number of built-in spectral measurements, such as channel power and adjacent channel power ratio
(ACPR). This section shows you how to do these and more in MATLAB. This gives you the ultimate flexibility in creating
your own custom measurements. For illustration purposes, this section shows measurements of:

Channel Power
The Channel Power measurement is used for measuring
the power of a digitally modulated signal. It is simply an
integration of the trace across the channel width, plus
corrections for the resolution bandwidth. The instrument
should be set up for RMS detection (via the Trace menu)
to make an accurate measurement.

The MATLAB code below computes:

• Which trace points encompass the channel

• A correction based on the noise bandwidth of the
current RBW filter

• The trace in mW (instead of dBm)

• The uncorrected channel power, in mW

• The corrected channel power, in dBm

The computed channel power in dBm is then displayed.
Channel Power measurement using MATLAB.

Channel power is a simple computation in MATLAB.

• Channel power in several ways:
– Without channel filtering
– With channel filtering
– As a script
– As a function

• Adjacent channel power

• Improved channel power and adjacent channel power
measurements using a concept called noise compensation.

• Multi-carrier power
• Harmonics
• Occupied Bandwidth
• Power Spectral Density

21

Channel Power with Filtering
Some channel power measurements require using a receiver filter, such as for the UMTS system. If we modify the above
code, we can easily add this filtering function. Once the filter is created (in the frequency domain), you must multiply the
spectrum (in mW) by the filtering function using this line of code:

power_trace = power_trace .* rrc_filter;

An example of creating a root-raised cosine (RRC) filter, such as used in the UMTS system is shown below:

MATLAB root-raised cosine (RRC) filter creation function (in the frequency domain).

22

Channel Power Function with Optional Filtering
If we combine all of the above pieces, add noise bandwidth correction, and then create MATLAB functions for channel
power and the RRC filter we get the following:

To invoke the channel power function for a UMTS signal with the required RRC filtering and over the defined 5 MHz
channel width, then display the result (in dBm), type the following (all on one line):

cp(5e6, Signature_Setup_Data.RBW,...
Signature_Setup_Data.Span, Signature_Trace1, ...
Signature_Setup_Data.NBW_to_rbw, ‘on’, 0.22, 3.84e6)

Then MATLAB will respond with an answer, such as:

ans=
-10.00

MATLAB channel power function, with optional RRC filtering.

23

Adjacent Channel Power (ACP)
The concept of channel power is easy to extend to adjacent
channel power. We can extend the above channel power
function by calling it several times—once for the channel
and once for each adjacent channel. The below MATLAB
function does exactly this.

This code simply calls the channel power function (defined
in the Channel Power section above), then takes a portion
of the spectrum trace for computing the power of the
adjacent channels. The result is the power in each
channel. To convert this to the Adjacent Channel Power
Ratio, simply subtract the ACP levels from the channel
power.

Signature’s 27 dBm typical Third-Order Intercept (TOI)
and low noise figure allow accurate ACPR measurements of
high performance devices.

MATLAB Adjacent-Channel Power measurement.

MATLAB Adjacent Channel Power function.

24

Noise Compensation
When measuring ACP, often the instrument noise floor is a limiting factor in making the most accurate measurements.
This limitation can be reduced by using “noise compensation”. This simply measures the instrument noise floor, using
RMS detection and long sweep time to reduce the variance due to noise. The function on the next page modifies the
above ACP measurement by subtracting a reference trace of just the noise from the measured trace including the signal.

MATLAB Adjacent Channel Power measurement without noise compensation. MATLAB Adjacent Channel Power measurement with noise compensation.
Notice the lower sideband levels.

MATLAB function for measuring ACP with noise compensation.

25

Plotting a Trace and Measuring ACP with Noise Compensation
By combining several of the above concepts, we can get a graph of the instrument trace including labels showing the ACP.
The following code shows:

• Capturing a reference trace

• Calling the acpnc function to compute ACP using noise compensation

• Plotting the trace after the noise is removed

• Labeling the plot with the channel power ratios

• Using the set function to speed the plot updates

Plot a trace & measure ACP with noise compensation with this MATLAB code.

26

Multi-Carrier Power
The ACP function can easily be expanded to show the
power in multiple carriers and offsets. The below code
does this by calling the cp function multiple times, once
for each channel, and then reporting all of the power
levels as a vector.

The second set of code below adds the noise compensation
function, just like for ACP.

Again, Signature’s exceptional TOI performance and low
noise floor enable accurate, fast multi-carrier power
measurements.

Multi-Carrier Power measurement.

MATLAB function for multi-carrier power.

27

MATLAB multi-carrier power function, with noise compensation.

28

Harmonics
Another common RF measurement is of harmonic content.
If we set up the Signature to show the fundamental and the
harmonics of interest, we can simply search for the peak
value (possibly excluding any LO feed through near dc),
and then look at multiples of that frequency. Since the
frequency values of the trace points aren’t necessarily the
exact frequency of the signal, the code has a small search
window for each harmonic. This search looks for the
highest value in each of the search windows.

Signature’s high TOI and low noise floor again allow fast
and accurate measurements of harmonics. The
instruments TOI specification directly indicates the
instrument-generated 3rd harmonic (with no attenuation);
you can also use this as a rough indicator of other
instrument-generated harmonics.

Measurement of Harmonics.

MATLAB function for measuring harmonics.

29

Occupied Bandwidth
The Occupied Bandwidth (OBW) measurement shows the
frequency range that contains a percentage (usually 99%)
of the entire energy in the measured span. For this to be
meaningful, a measurement span must also be specified.

A related measurement, sometimes called emission
bandwidth, shows the frequency range that contains
amplitudes above a particular level— usually 26 dB below
the signal peak.

Occupied Bandwidth measurement.

30

MATLAB Occupied Bandwidth (OBW) function.

31

Power Spectral Density
To convert a trace to power spectral density (PSD), use the
RMS detector and offset the trace by 10*log(RBW), plus
the same correction factor for the noise bandwidth as used
in the channel power measurement. Use the RMS detector
for making PSD measurements.

Note that the name of this function is Signature_psd, as
there is a MATLAB function already named psd (in the
Signal Processing Toolbox).

Power Spectral Density (PSD) measurement.

MATLAB power spectral density (psd) function for Signature.

32

IQ Measurements

Frequency versus Time
The display of frequency versus time is very useful when looking
at the transient response of Voltage-Controlled Oscillators
(VCOs), Direct Digital Synthesizers (DDSs), and Phase-Locked
Loops (PLLs). With the IQ vectors from Signature, it’s easy
to compute frequency vs. time—just use the angle function
to convert to phase, then compute the phase change versus
time. The MATLAB unwrap function is essential to this process.
This function detects a large phase change (close to 360°)
between adjacent points, and adds in the “missing” 360°.

The gate time parameter lets you trade off frequency
resolution versus time resolution. The longer the gate
time you choose, the better the resulting frequency
resolution, but the poorer the time resolution.

Note that the frequency resolution of this technique is
extremely high; the limiting factors are only the signal-to-
noise ratio and the phase noise of the Signature local
oscillator. The excellent phase noise performance of
Signature allows frequency measurement capability
exceeding the best frequency counters available.

Frequency versus time display of a chirp signal.

MATLAB function to convert IQ vectors into frequency versus time.

33

CCDF
The Complementary Cumulative Distribution Function
(CCDF) is used to understand the amplitude statistics of
modulated signals. The graph shows the probability that a
peak exceeds the average amplitude by a number of dB.
The graph at the right shows an example CCDF plot.

CCDF is easy to compute by using the MATLAB hist
function on the signal power to get the histogram, then
integrating the histogram to get the CCDF curve.

Example CCDF plot.

MATLAB code for creating the CCDF data.

34

Since the histogram is done on the power, the CCDF could be computed using a zero-span trace, but this is limited to only
501 points.

The IQ vectors in Signature can provide many thousands of points instead of just 501.

Before using the CCDF function shown here, you must convert the IQ vectors to power by using the MATLAB abs
function, and then convert to dB, e.g.:

Power=20*log10(abs(Signature_IQ_Data))

To plot the computed CCDF curve, use the MATLAB semilogy graphing function:

Average_power=mean(Power);
Total_count=length(Power);
[Count, X_axis]=ccdf (Power, Bin_size, X_range);
semilogy(X_axis-Average_power,Count)
axis([0,X_range,1/Total_count,1]);

Spectrograms

A spectrogram is a display that shows the 3 dimensions of amplitude, frequency, and time, all on a single plot. It does this
by showing amplitude using color, and using the other axes for frequency and time.

There are several ways to compute a spectrogram using MATLAB, including the specgram function, the specgramdemo
function, as well as manually computing the FFTs and building the display.

Specgram function
If you have installed the Signal Processing Toolbox
option to MATLAB, you can use the specgram
function. This will compute a spectrogram from the
IQ data, including FFT windowing, and display the
result. Here are a few examples of using the
specgram function:

Use all defaults:
specgram(Signature_IQ_Data)

Change the FFT size to 1024, specify that the sampling
rate is 20 ns, so the time axis is correct:
specgram(Signature_IQ_Data, 1024, 20e-9)

You can also specify different windows and use overlapping to improve the time resolution.

The presentation of the MATLAB specgram function, however, has two limitations. First, the axes are swapped compared
to the traditional instrument presentation—while instruments usually have frequency on the X-axis, specgram has
frequency on the Y-axis. Second, the frequency range for specgram for IQ data is from 0 Hz to the sampling frequency
(Fs), while the IQ vectors in Signature range from -Fs/2 to Fs/2. These limitations are easy to fix by using the MATLAB
transpose operator (a single quote), fftshift, and scaled image (imagesc) functions:

Y=20*log10(abs(fftshift(specgram(Signature_IQ_Data),2))');
imagesc(Y)

MATLAB specgram display of a chirp signal, including correct time & frequency axes,
and rotation to show Frequency on the x-axis.

35

Labeling the Spectrogram Axes
The figure on the previous page has the X-axis labelled with the analyzer center frequency. The normal labelling of the
specgram axes are related to the sampling time. You can manually label the axes as well, by using the following commands:

set(gca,’XTickLabel’,label_string)
set(gca,’YTickLabel’,label_string)

The label_string can be in a variety of formats, such as a
string array. Check the MATLAB help documentation on
Axes Properties for details.

MATLAB Spectrogram Demo
The Signal Processing Toolbox in MATLAB also includes a
more advanced spectrogram display, called
specgramdemo. This includes various display additions,
including a time overview as well as “slices” of time and
frequency delimited by markers. The figure shows the
results of running specgramdemo on a chirp (frequency
sweep) signal.

Signature Option 40 includes a modified version of
specgramdemo that shows the spectrum of the correct
frequency range, including the Center Frequency on
Signature.

You can call this with the following line: Signature_specgramdemo(double(Signature_IQ_Data),...
1/Signature_Setup_Data.Sampling_period)

Building your own Spectrogram
A third way to get a spectrogram is to create it from scratch. You can build a matrix using multiple FFTs, and then display
the spectrogram by using imagesc. This allows, for example, building up a spectrogram from multiple acquisitions. For
example, assuming Signature is in FFT mode:

Y=Signature_Trace1;
for i=1:100

Y=cat(1,Y,Signature_Trace1);
pause(0.1);

end
imagesc(Y);

The pause statement allows the instrument to take new data. You may need a longer pause if you are using very narrow
resolution bandwidths. You can also use handshaking instead of the pause statement; this will work with any RBW.

Spectrograms from IQ vectors vs. from Traces
As we have seen in the above examples, there are 2 different methods of building a spectrogram. Using the IQ vectors
provides continuous information over a short time frame (up to about 1 second). Using instrument traces provides a
much longer time – of minutes, hours, or even days.

Signature_specgramdemo result on an 802.11a signal.

36

Using Simulink

Simulink is another product from The MathWorks that has
advantages for developing demodulation models. Simulink
uses a block-diagram-editor and deals with time as a
simulation parameter.

The figure shows the Simulink Library Browser. This is
where you can find blocks and add them to your model.

This section will show you how to get Signature
information into Simulink, perform a simple
demodulation, make some measurements, and return the
results to MATLAB.

Simulink Library Browser.

FSK Demodulation
The figure shows an example Simulink model for
demodulating and measuring a signal that uses Frequency-
Shift-Keying modulation.

The blocks in the model are:

• From Signature
This is a Simulink Signal from Workspace block, which
lets you get data from MATLAB (and therefore
Signature), and set the sample rate. Note that this block
is from the MATLAB Signal Processing Blockset.

• To Frequency
This is a Simulink subsystem, which contains several
other blocks. At this level, it is a simple FSK
demodulator—it converts baseband IQ vector data into
frequency-versus-time data.

• Measure FSK
This is another subsystem, which takes the frequency-
versus-time values and measures the center frequency
error and the deviation.

• Three “To MATLAB” blocks.
(“FvsT To Workspace”, “To MATLAB2”, and
“To MATLAB3”)
These are Simulink “To Workspace” blocks, which
make the measurement results available to MATLAB.

Simulink FSK demodulation & measurement block diagram.

37

“To Frequency” Block
The conversion to frequency subsystem:

• Converts the IQ vectors to phase

• “Unwraps” the phase. This means that sharp transitions
are eliminated, which allows the phase to be more than
360 degrees

• Reduces the sampling rate to be twice the symbol rate

• Takes the difference between adjacent phase readings

• Converts the phase changes to frequency. This conversion
is based on the phase change and the sample rate.

If you double click on the Downsampling block, you will
see that there is an equation to select the downsample
factor. This equation is based on the sampling rate from
Signature and the expected symbol rate of the signal. You
must specify the expected symbol rate in a MATLAB
variable named ‘sr’. The equation shown gives 20
samples per FSK signal.

Simulink “To Frequency” subsystem converts IQ vectors into frequency versus time.

Simulink parameters for the Downsample block can use MATLAB variables.

“Measure FSK” block
This subsystem sorts the frequency data into 2 groups –
those above the center frequency (which is zero Hz at
baseband), and those below the center frequency. Each of
these groups is then averaged to get an estimate of the
high frequency and low frequency states. These two
frequency estimates are then averaged to get a
measurement of the center frequency error (Out1); the
difference is taken to get the frequency deviation (Out2).

“Measure FSK” subsystem sorts frequency measurements into 2 groups to determine
center frequency error & deviation.

38

Getting MATLAB data into Simulink
The Signature IQ vectors in MATLAB must be reformatted before they are transferred to Simulink. This is because
Simulink requires complex inputs to be in a structured format. The following code shows how to do this.

Measurement Results
The figure to the right is a MATLAB graph that shows the
frequency-versus-time measurements, as well as the
resulting center frequency error and frequency deviation.

39

Instrument Control

Controlling Signature through Web Services

In addition to a GPIB interface, Signature can also be controlled by a Web Services connection. This is available both via
the LAN, as well as directly on the instrument. This means that you can also use MATLAB to control Signature
measurements right on the instrument.

The figure shows a simple example of using MATLAB to control Signature via the Web Services interface. It sets up the
Web Services (if they aren’t set up already), presets the instrument, then sets the center frequency to 1 GHz.

If you want to use this code to talk to Signature via a network, instead of on the instrument, change the host from
“localhost” to the Instrument Name. You can find the Instrument Name by going to the System menu, selecting
Configuration, IO Config, and then Instrument Name.

Use the Web Services interface to control Signature from MATLAB running on the instrument or another computer.

40

You can get the list of Web Services commands on Signature several ways:

• The Signature programming manual. This is available both as a printed manual, and through the Documentation item
in the Help pulldown menu.

• After you run the CreateClassFromWsdl command in MATLAB, there will be a new directory created under the current
directory (usually C:\Signature\MathWorksConnectivity). You can see what commands are available by using MATLAB to
look at the files in these directories. Since Signature has 3 Web Services, there can be 3 directories, called:

– @SignatureSystem
– @SignatureSpectrum
– @SignatureModulation

• Use a web browser to look at the web descriptions of the available services. You can look at the available commands, see
the syntax for each command, and in many cases test the operation of the command. In a web browser running on the
instrument, look at:

– http://localhost/signaturesystemcontrol/signaturesystemcontrol.asmx
– http://localhost/signaturespectrum/signaturespectrum.asmx
– http://localhost/signaturemodulation/signaturemodulation.asmx

One of the benefits of the Web Services interface is that it is “location independent”. The example code is written to run
directly on Signature, but by changing the definition of the host variable in the example program, you can control a
Signature connected to the network. Note that the host name is embedded in a file that MATLAB creates when you use
the createClassFromWsdl function.

The createClassFromWsdl function does have a fair amount of overhead (5-10 seconds for SignatureSpectrum and
about 1 second for SigantureSystem), so you may not want to use it every time you run your code. As long as you are
referring to the same instrument, this works fine.

Note that there is a bug in the Web Services implementation in MATLAB R14SP2 that causes problems when using
Signature. You can go to MATLAB Central to get patches to fix this bug at:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7938&objectType=FILE
Versions of MATLB beyond R14SP2 are expected to include these patched files.

Also note that there is a short delay (typically about 20 ms) after making a Web Services call before
Signature_Setup_Data is updated.

You can also read data from Signature via Web Services. For example, to read Trace 1 into a variable called Trace1, use the
following code (after using CreateClassFromWsdl & spa=SignatureSpectrum as shown above).

Trace=GetTraceData(spa,1);
str2num(char(Trace.float));

41

GPIB Control of Other Instruments from MATLAB

The Instrument Control Toolbox in MATLAB allows
controlling instruments through GPIB and other
interfaces. If you have the GPIB interface in Signature
(Option 3), you can easily control other instruments, such
as signal sources. You need to set Signature to be the GPIB
System Controller by:

• Selecting System, Configuration, IO Config, GPIB.

• In the National Instruments Measurement & Automation
Explorer that comes up, click on ‘Devices and
Interfaces’, right click on GPIB0, and select Properties.

• Click on the System Controller box, click OK, and close
the Measurement & Automation Explorer.

• On the lower right corner of the display area, Signature
shows that it is now in System Controller mode.

You can tell when Signature is the GPIB System Controller mode by the annotation in the
lower right corner of the display area.

Example of Controlling Instruments—Measuring ACPR versus Power

An example of using MATLAB to control both other
instruments via GPIB (using the MATLAB Instrument
Control Toolbox), and Signature using Web Services is
available. The example uses an Anritsu MG3700A Vector
Signal Generator to generate a WCDMA modulated signal,
and then measures Adjacent Channel Power Ratio of a
Device as the input power level is changed. You can look at
the example in the file ACPvsP.

-25

-30

-35

-40

-45

-50

-55

-60

A
C

P
R

(d
B

)

Main Channel Output Power (dBm)

Lower Channel
Upper Channel

ACPR vs Pout @ f0 = 2140 MHz; Pin = -24 to -10 dBm

-2 0 2 4 6 8 10 12

ACPR vs. Output Power of a class-A amplifier using the ACPvsP script.

42

MATLAB Demonstration
The Signature “Connectivity to MATLAB” option (Option 40) includes an example graphical user interface that uses many
of the above functions and automatically updates measurements using timers. An example of this demonstration doing a
channel power measurement is shown in the figure.

To invoke this example, type the following on the MATLAB
command line:

Signature_Demo

If you wish to use a different trace than Trace 1, or start the
demonstration using a specific measurement, you can use the
longer form of the command, shown below. Note that the
last parameter is optional and is the name of one of the items
in the dropdown box in the upper left corner of the demo GUI.

Signature_Demo Signature_Trace1...
Signature_Setup_Data Signature_IQ_Data...
'channel power'

Using the MATLAB Demonstration

The various demonstrations use different data from Signature. Most of the demonstrations use the spectrum output. The
“plot trace” demo works with zero-span data. The CCDF and Frequency vs. Time demonstrations require IQ vectors from
Signature. To do this, make sure that the IQ vector output is turned on in the MATLAB setup dialog and put the
instrument into Modulation Measurement mode.

The spectrogram works on either spectrum data or on IQ vectors. If spectrum data exists, a spectrogram is built out of successive
spectra. If spectrum data doesn’t exist, but IQ data is available, the spectrogram is built from the IQ data; this allows a much
shorter time span for the measurement. To get IQ data, the instrument must be in the Modulation Measurements mode.

Note that once a spectrum is output to MATLAB it is never cleared by Signature. So if you want a spectrogram from IQ
data, you must either start the MATLAB interface with the Trace output turned off, or after switching the instrument to
Modulation Measurements mode, you would type the following line of code in the MATLAB command window:

clear Signature_Trace1

MATLAB demonstration GUI for Signature.

43

How to get support
Anritsu and The MathWorks are both committed to supporting you using MATLAB on Signature. For support on Signature
connectivity to MATLAB, contact Anritsu by going to www.anritsu.com, clicking on “Contact Us”, and selecting your country.
This will list your local phone number and e-mail address. In the U.S., you can also call 1-800-ANRITSU (267-4878).

For support on the details of MATLAB, contact The MathWorks via their web site.
Go to www.mathworks.com and click on “Support”.

Conclusion
By combining MATLAB with the Anritsu Signature High Performance Signal Analyzer, you can do your own analysis
quickly and easily right on the instrument, including live updates of traces and measurements.

References
1. The MathWorks

3 Apple Hill Drive, Natick, MA 01760-2098
Phone: 508-647-7000; Fax: 508-647-7001; http://www.mathworks.com

Discover What’s Possible®

SALES CENTERS:
United States (800) ANRITSU Europe 44 (0) 1582-433433 Microwave Measurement Division
Canada (800) ANRITSU Japan 81 (46) 223-1111 490 Jarvis Drive, Morgan Hill, CA 95037-2809
South America 55 (21) 2527-6922 Asia-Pacific (852) 2301-4980 http://www.us.anritsu.com

11410-00353 Rev. B ©Anritsu September 2005. All trademarks are registered trademarks of their respective companies.
Data is subject to change without notice. For more recent specifications visit www.us.anritsu.com.

	Introduction
	MATLAB Analysis Examples
	Installing MATLAB on Signature
	Configuring Signature to use...
	The MATLAB Desktop Window

	Getting Setup Information fr...
	Getting Data from Signature ...
	Viewing the trace values
	Drawing a Signature trace in...
	Plot
	Loops
	Timers

	Synchronization
	Trace Averaging with Handsha...
	Storing Multiple Traces with...
	Manual Sweep with Handshaking
	Timers with Handshaking

	Zero-span traces
	Modulation Measurements

	IQ Vectors
	Plotting IQ Vectors
	Plotting the Magnitude of IQ...
	FFT of IQ vectors
	FFT with Windowing
	I and Q magnitudes
	I and Q Polar plot

	Saving captured IQ vectors t...

	Example Applications
	Spectral Measurements
	Channel Power
	Channel Power with Filtering
	Channel Power Function with ...
	Adjacent Channel Power (ACP)
	Noise Compensation
	Plotting a Trace and Measuri...
	Multi-Carrier Power
	Harmonics
	Occupied Bandwidth
	Power Spectral Density

	 Measurements
	Frequency versus Time
	CCDF

	Spectrograms
	Specgram function
	Labeling the Spectrogram Axes
	MATLAB Spectrogram Demo
	Building your own Spectrogram
	Spectrograms from IQ vectors...

	Using Simulink
	FSK Demodulation
	“To Frequency” Block
	“Measure FSK” block
	Getting MATLAB data into Sim...
	Measurement Results

	Instrument Control
	Controlling Signature throug...
	GPIB Control of Other Instru...
	Example of Controlling Instr...

	MATLAB Demonstration
	Using the MATLAB Demonstration

	How to get support
	Conclusion
	References

